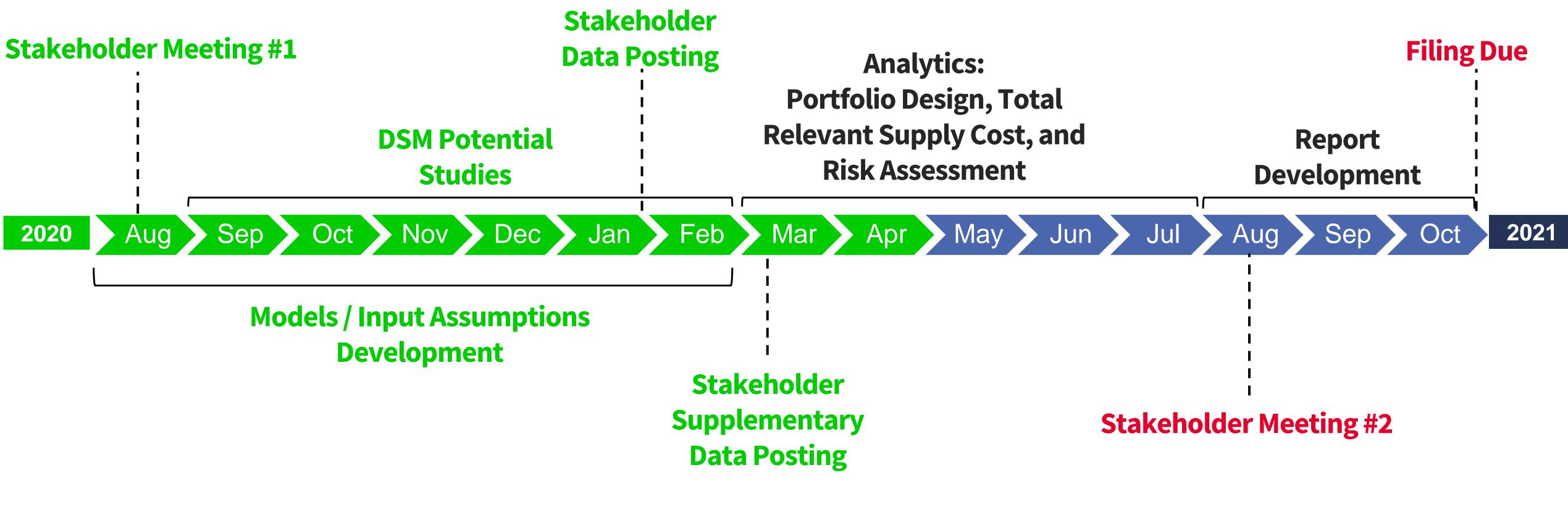


ENTERGY ARKANSAS, LLC MAY 2021

Creating sustainable value for all

WE POWER LIFESM

Meeting Agenda


Discussion centers around Stakeholder-requested information from the March 4, 2021 Stakeholder meeting

- Project Schedule Update
- EAL Futures Scope Matrix
- Technology Assessment Updates
- ICF DR & DER Potential Study

- Multiple data postings have been completed
- ICF DR & DER Potential Study complete; final narrative report is pending
- AURORA modeling scheduled to begin in May

Future dates are preliminary and subject to change.

2021 EAL IRP Scope Matrix

	_	
IR	P	ŀ

		Future 1 Reference	Future 2 Policy Paralysis	Future 3 DSM & Renewables	Future 4 Growth & Renewables
Peak / Energy L	oad Growth	Reference	Reference*	Low	High
Natural Gas Pric	ces	Reference	Low	Low	High
CO ₂ Tax Assump	otion	Reference	None	Reference	High
EAL DR / EE / DI	ER Additions				
	ICF DR Portfolios	AURORA Optimization	AURORA Optimization	AURORA Optimization	AURORA Optimization
	EAL EE Programs	Reference (EAL '20-'22 Plan)	Reference (EAL '20-'22 Plan)	Reference (EAL '20-'22 Plan)	Reference (EAL '20-'22 Plan)
	ICF DER Portfolios	Medium	Low	High	Medium
EAL CCGT Life A	ssumption**	Reference (30 Year Life)	Extend through end of study period	Reference (30 Year Life)	Reference (30 Year Life)
EAL Nuclear Life	e Assumption	ANO1: 2034, ANO2: 2038	ANO1: 2034, ANO2: 2038	ANO1: 2054, ANO2: 2058 (20-year extension)	ANO1: 2054, ANO2: 2058 (20-year extension)
EAL Coal Retire	ments		Reference Case (All Futures	s) WB: 2028, ISES: 2030	
		Sensitivity Cases (Future 1): S1: WB1:2023, WB2:2026, S2: WB1-2:2026, S3: ISES1-2:2026, WB1-2:2028			

	Future 1	Future 2	Future 3	Future 4
Generation Focus	Gas & Renewables	Gas	DSM & Renewables	Renewables

*Load levers for this future are expected to result in peak and energy levels slightly lower than reference, however the profile/shape will vary due to different underlying assumptions **Existing EAL CCGTs: Hot Spring, Ouachita 1-2, Union 2

Future Assumptions

BP21 Refresh Technology Assessment Summary

As part of an on-going process, Entergy evaluates existing, new and emerging technologies to meet supply-side resource needs. **COMMERCIAL** What are a technologies **cost** and **market** indicators? **Stakeholders TECHNICAL** B associated with a specific technology? A Commercial **Technical REGULATORY & POLICY** How do regulatory bodies and federal + state policies encourage or disincentivize deployment? **STAKEHOLDERS** Regulatory stakeholders? Customers, Communities, Employees, and Shareholders. & Policy

Technology Assessment: Four Lenses

What are the operational, environmental, and internal capability factors

How does the technology deliver on the **needs** and **expectations** of our four key

TA Updates and Corporate Sustainability Commitments

- expansion models.
- - alternatives to reflect hydrogen- capability.

• In this IRP, we adopted a screening approach to evaluate the cost-effectiveness and feasibility of deployment of potential resources. This screening consist of quantitative and qualitative criteria that have informed a final selection of supply-side generation alternatives to be included in capacity

• EAL continues to focus on balancing affordability, reliability, and environmental stewardship, which includes efforts to reduce emissions profile of supply-side resources over time. These efforts in environmental stewardship are supported by increasing emphasis on decarbonization in state and federal policy conversations as well as increasing announcements of customer climate-related goals. Incorporation of new technologies is one of the ways that protect customers against long-term risks and enable customers to meet their own sustainability objectives. The company is committed to ensuring that the investments we make today continue to serve our customers long into the future. • For this reason, all future conventional generation plants will be hydrogen capable, allowing these highly efficient machines to transition to hydrogen fuel when it is in the best interest for customers. • In alignment with our recent public commitments, we have updated our future new conventional generation

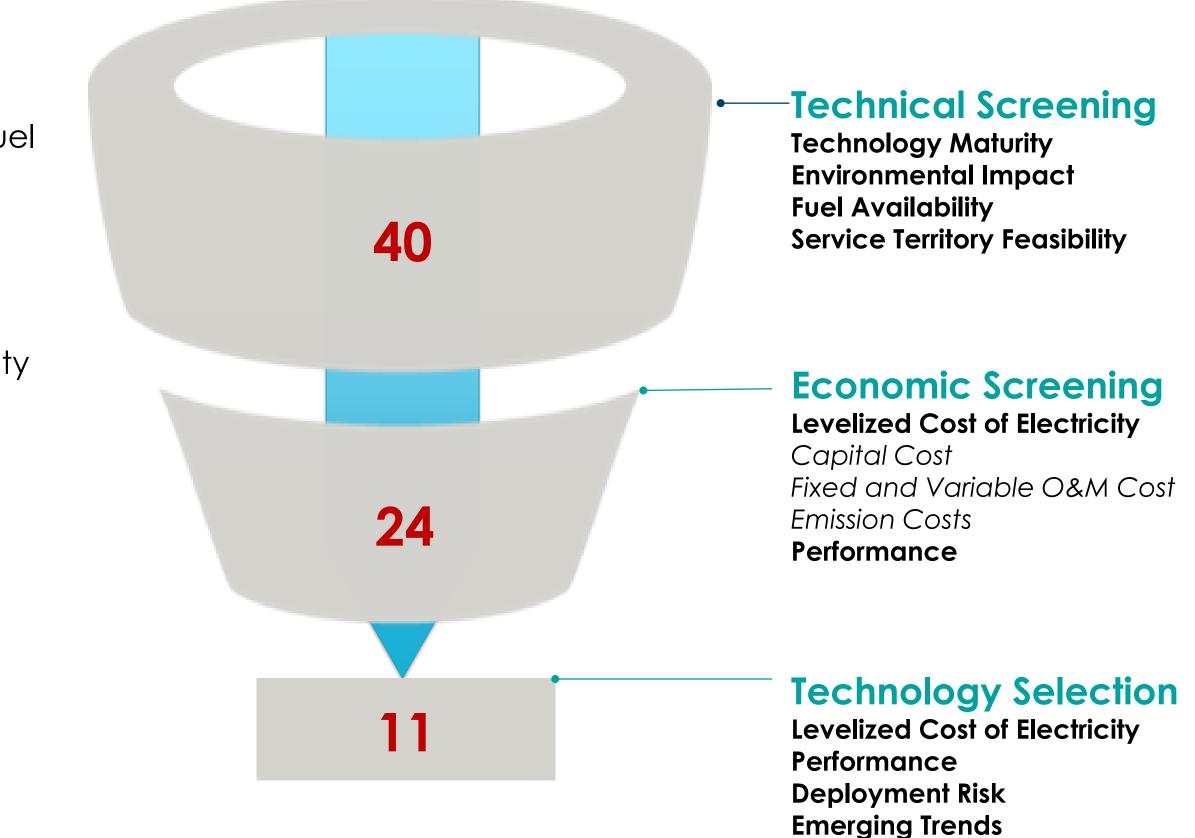
• The OpCo build for capacity expansion will include only conventional generation that is hydrogen-capable.

Supply-side alternatives: Screening Approach

Screening approach is designed to evaluate the cost-effectiveness and feasibility of deployment of potential resources.

TECHNICAL SCREENING

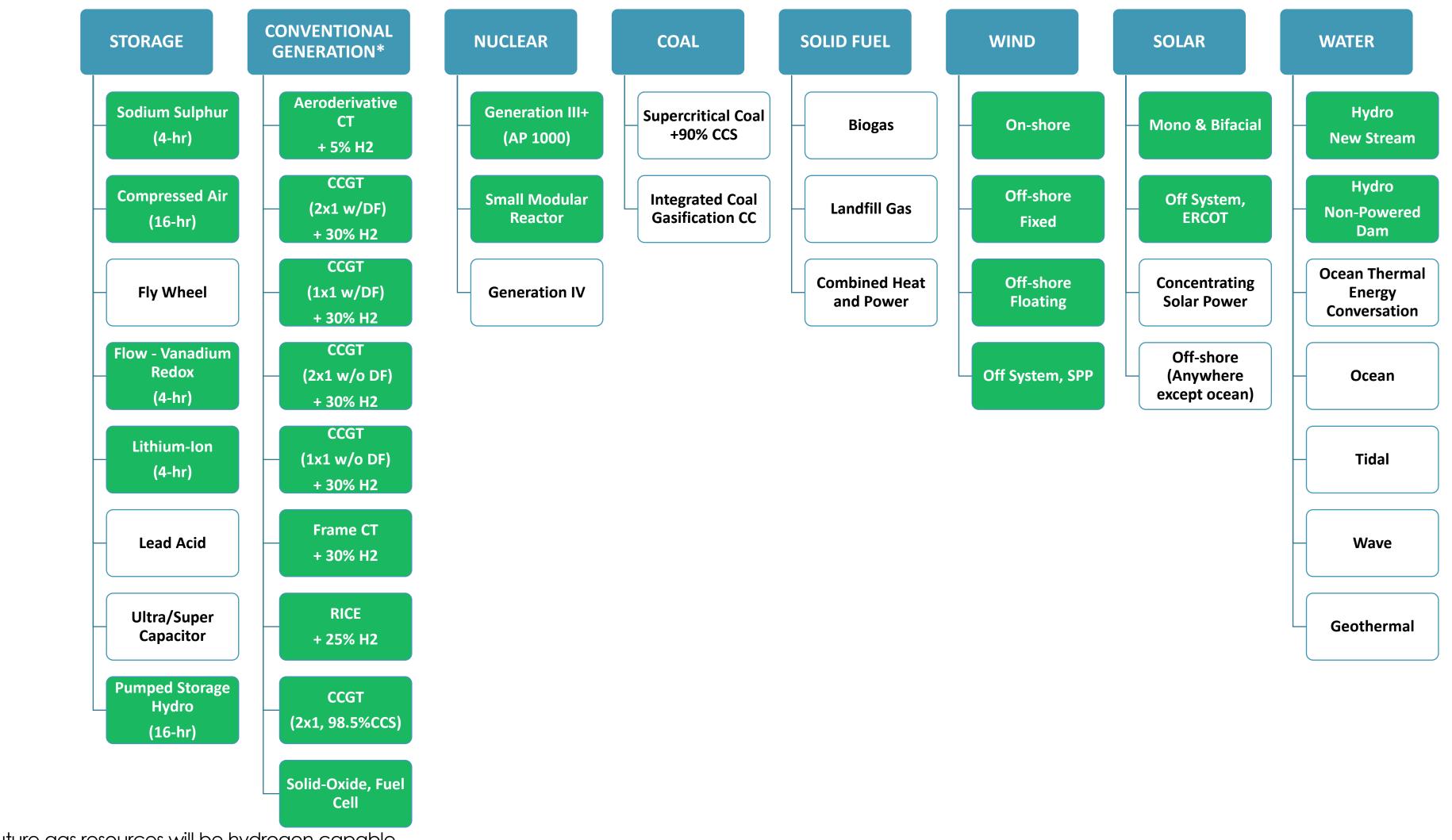
The technical screening process evaluates potential supply side alternatives based on technology maturity, environmental impact, fuel availability, and feasibility to serve EAL's generation needs. From this, generation alternatives are narrowed down for inclusion in the economic screening.


ECONOMIC SCREENING

The economic screening process evaluates levelized cost of electricity metrics and key performance parameters. From this, generation alternatives are narrowed down for inclusion in the capacity expansion.

TECHNOLOGY SELECTION

The technologies selected for inclusion in the capacity expansion model are those deemed to be most feasible to serve EAL's generation needs based on comparative LCOE and performance parameters, deployment risks (cost / schedule certainty), and emerging commercial, technical, and policy trends.

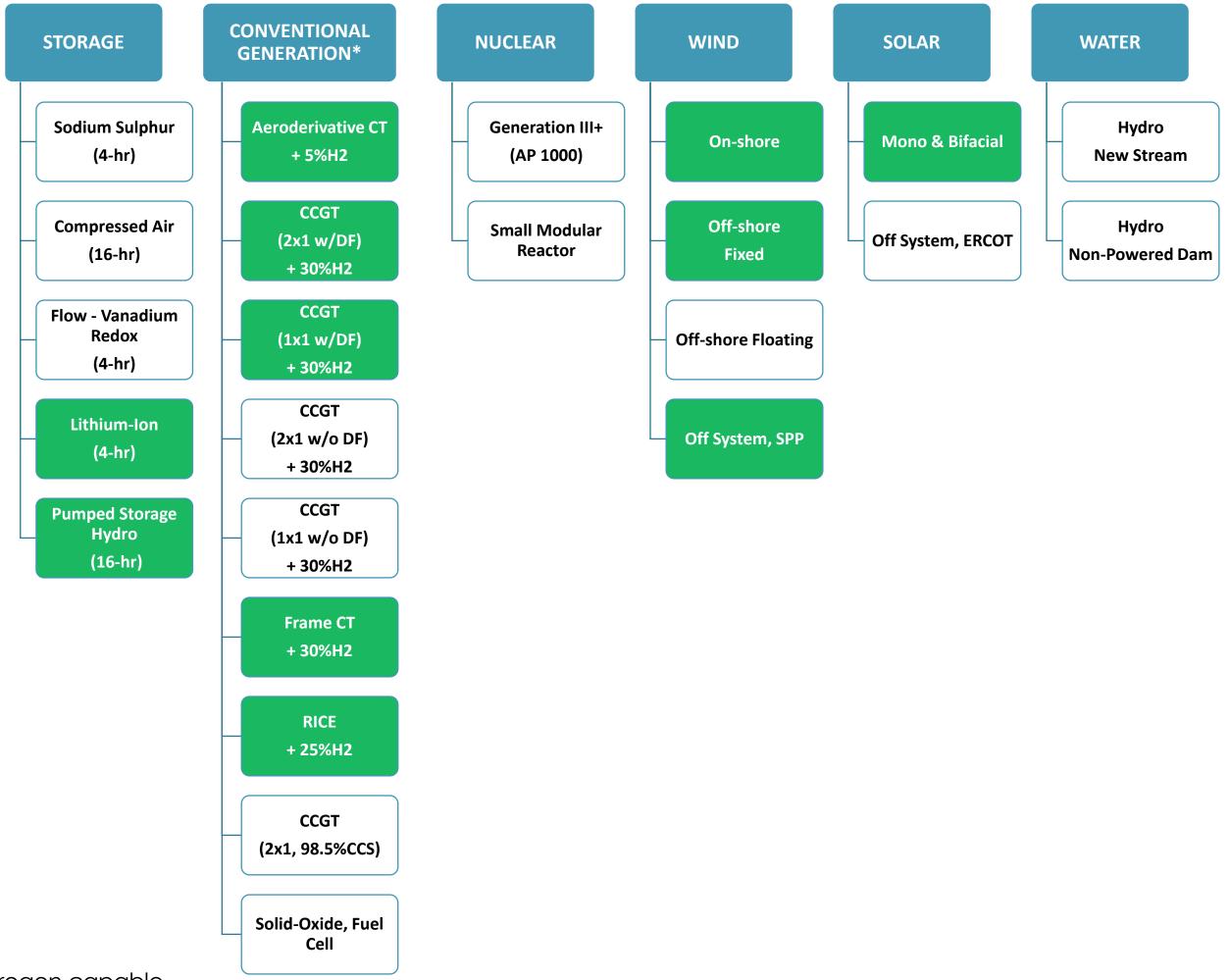


Technical Screening

Evaluated 40 generation alternatives with 24 selected for the economic screening:

Notes:

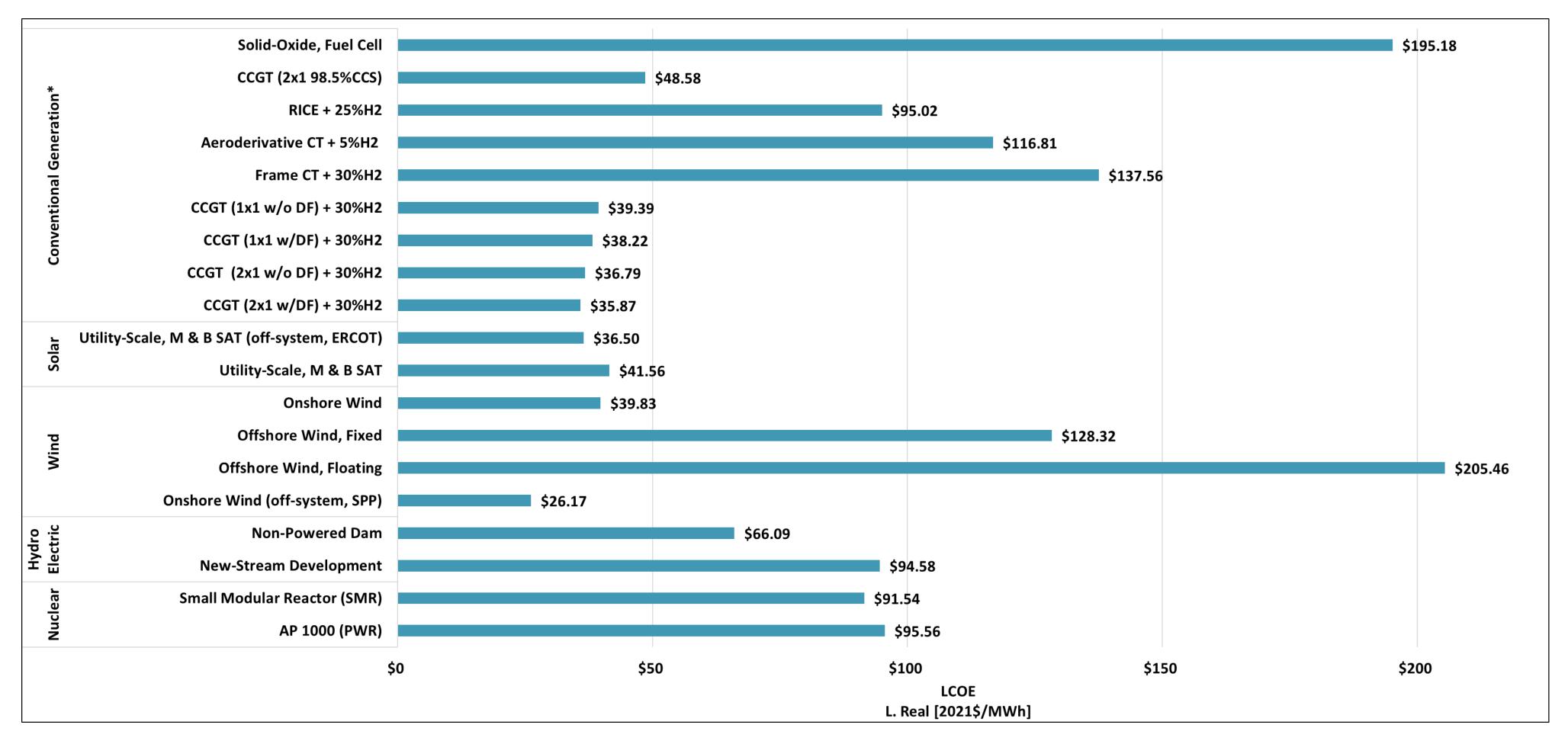
* Any large-scale future gas resources will be hydrogen capable.



Economic Screening

Economic screening evaluated 24 generation alternatives with 11 selected for EAL capacity expansion

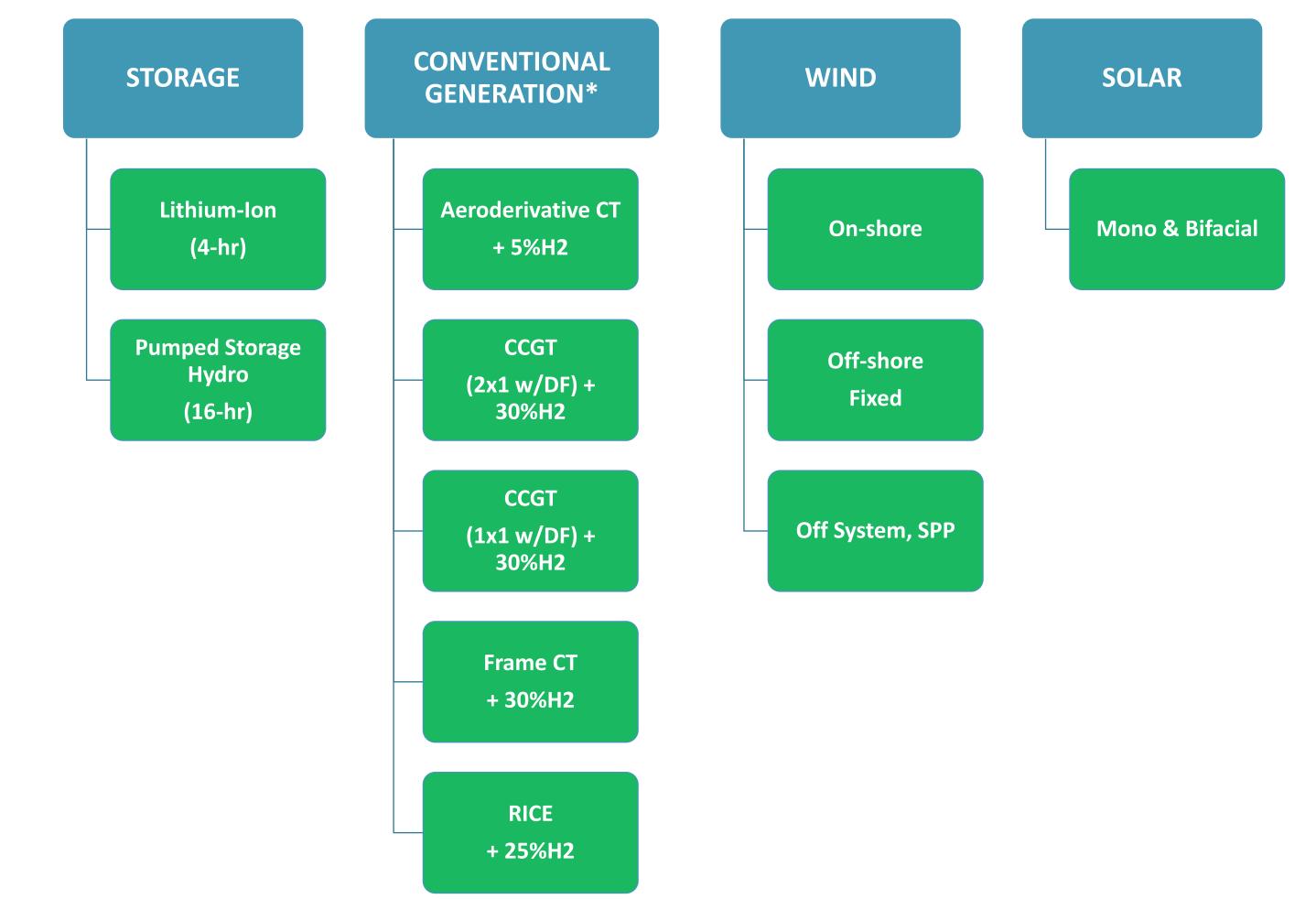
Notes:


* Any large-scale future gas resources will be hydrogen capable.

Overview: Levelized Cost of Electricity

*Any large-scale future gas resources will be hydrogen capable. (H2 gas technologies show the installed capital cost to burn H2, but not the actual cost to burn H2. Currently under development to produce both the ICC and fuel cost associated with burning hydrogen and the reduction in emission cost.)

- LCOE is calculated as levelized total cost over the book life divided by the levelized energy output over the book life. (based on 12.2020 EAL WACC)
- LCOE for storage is not shown because as storage just moves MWh from one time to another there is no actual 'output' of energy therefore it's undefined. Both solar off-system (ERCOT) and wind off-system (SPP), does not include transmission cost.
- ITC normalized over useful life and assumes an extended ITC for Solar, PTC for On-shore Wind, and ITC for Off-shore Wind. •
- 2025 receive 60% PTC, in 2026 or beyond are not eligible for tax credits. Assumes off-shore wind projects online between 2021 and 2035 receive 30% ITC.



Assumes solar projects online between 2021 and 2023 receive 30% ITC, between 2024 and 2025 receive 26% ITC, beginning 2026 and beyond receive 10% ITC. Assumes on-shore wind projects online in 2021 receive 80% PTC, between 2022 and

Technology Selection

Selected generation alternatives include renewables, storage, and hydrogencapable conventional generation

Notes:

* Any large-scale future gas resources will be hydrogen capable.

ICF DR & DER Potential Study

Achievable potential DR & DER based on EAL's customers

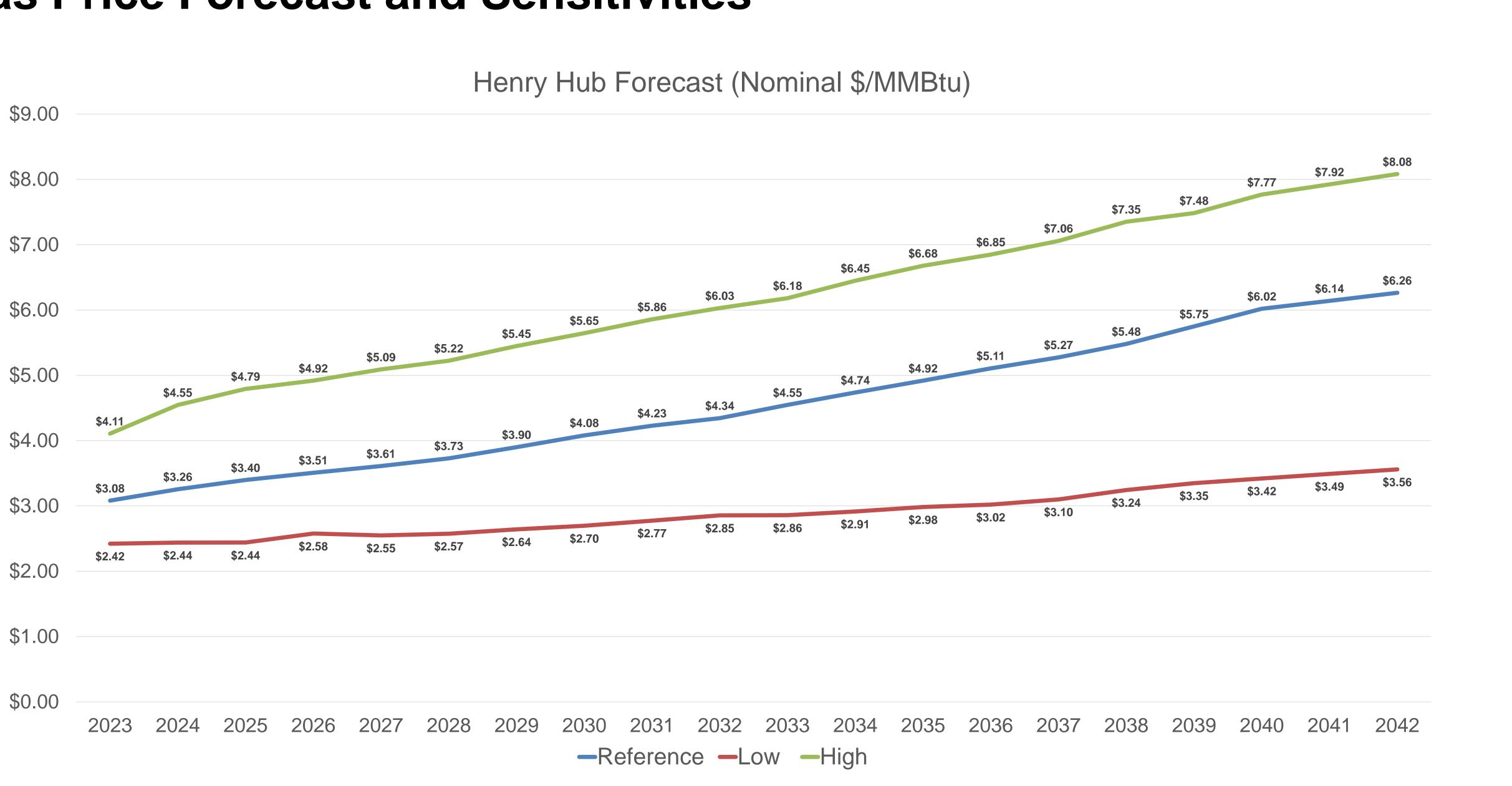
- EAL engaged with ICF to conduct a forecast of the achievable potential of selected demand response (DR) program types and distributed energy resource (DER) technologies on EAL's system from 2023-2042
- Output from the ICF study will be used as inputs to the IRP modeling:
 - Reference, high and low hourly DER load shapes will be mapped to the respective Future load forecast, resulting in various levels of load reduction
 - The DR programs for the reference, high and low hourly load shapes will be included for selection in the AURORA capacity expansion model using the program cost associated with the demand savings

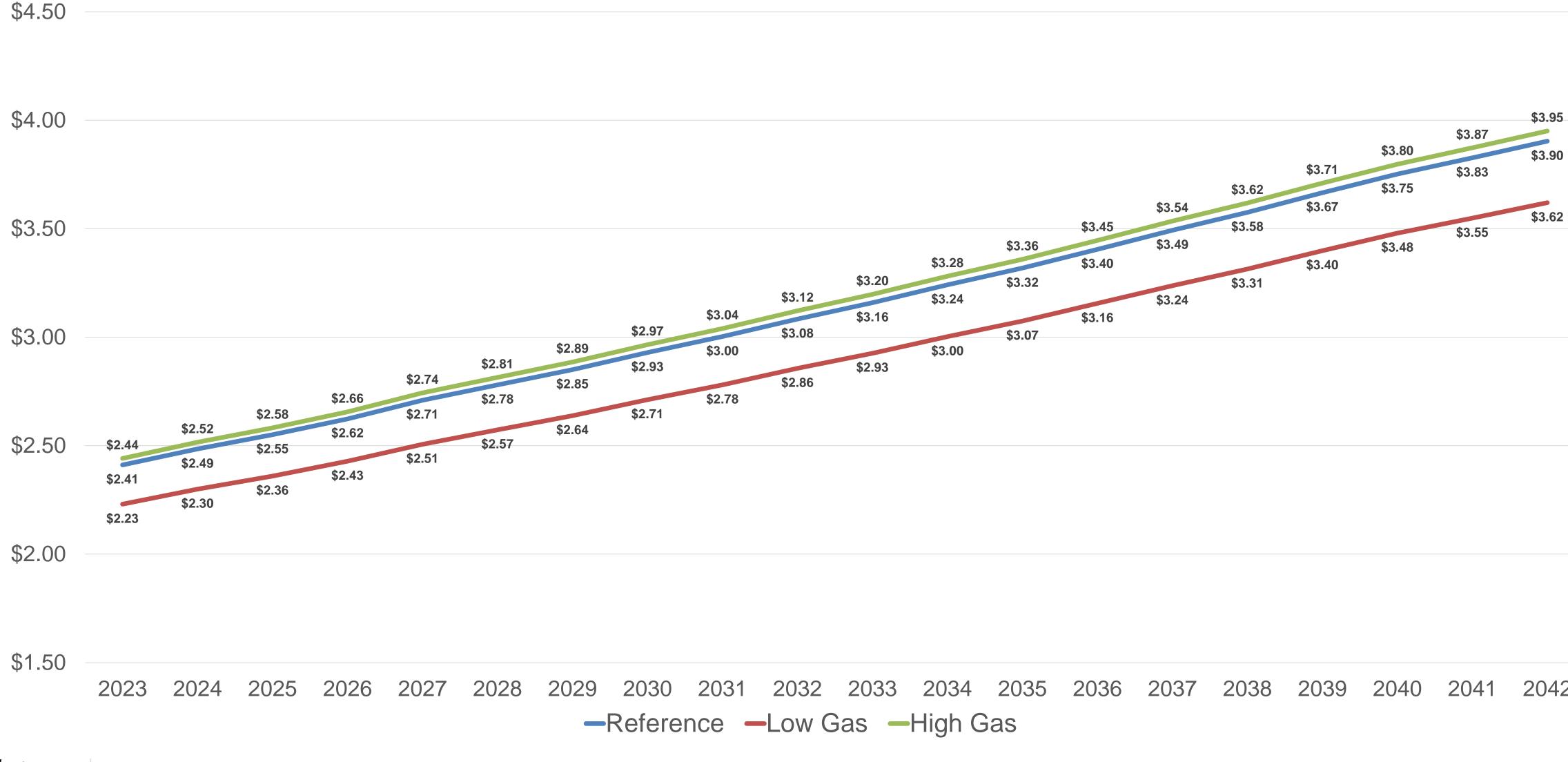
Appendix

Supplementary Data Posting Slides

2021 IRP Supplementary Data Posting

Includes Stakeholder-requested information from the March 4, 2021 conference call meeting

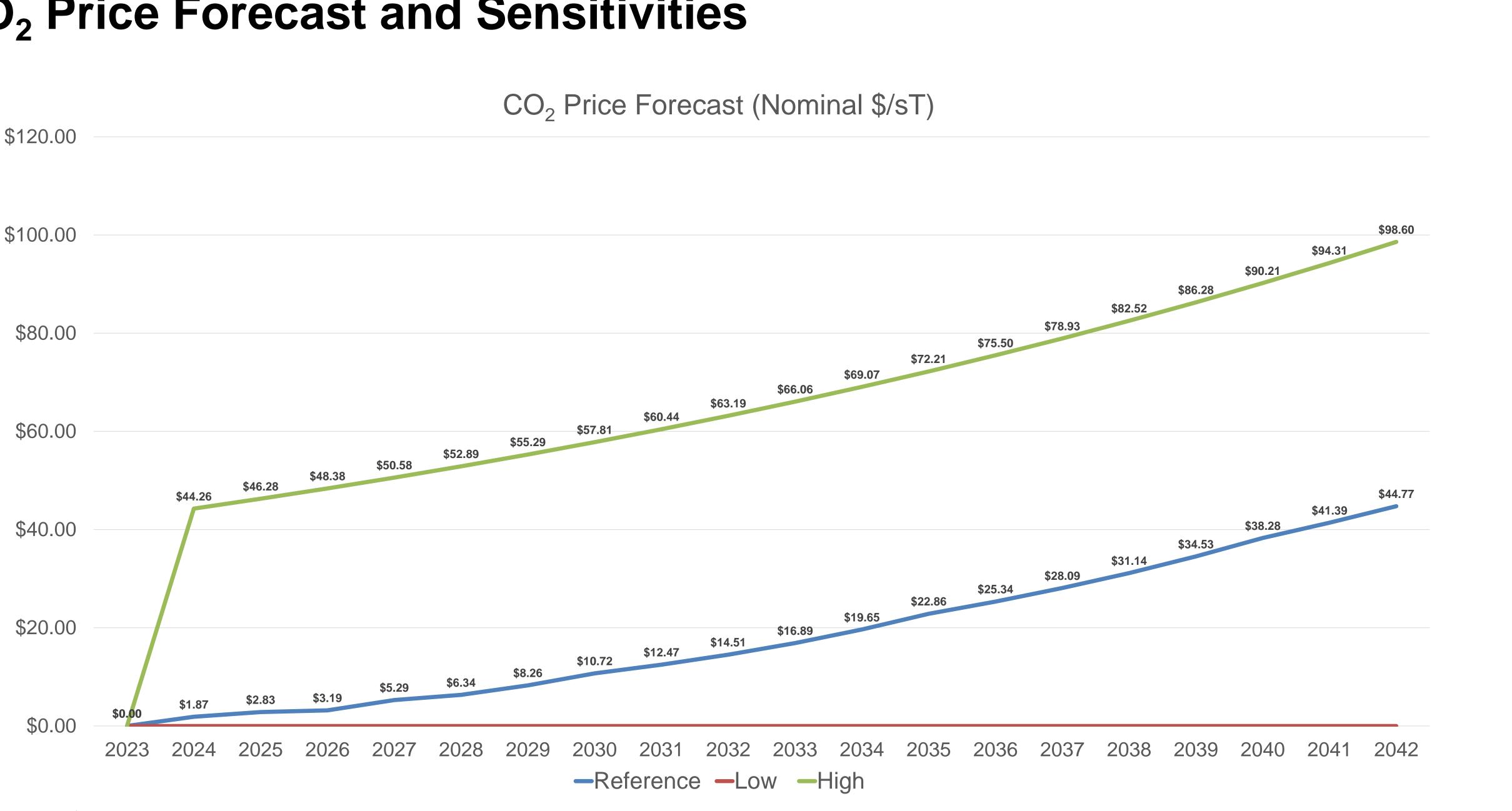

- Fuel Price Forecasts and Sensitivities
 - Gas Price Forecasts (Henry Hub), Coal Price Forecasts
- CO₂ Price Forecasts and Sensitivities
- Levelized Cost of Electricity by Technology Type
- Cost and Performance Assumptions
 - Extended PTC/ITC
 - Renewables (Solar PV & Wind MISO South)
 - Installed Capital Cost: Renewables & Storage
- Load Forecast Assumptions by Future



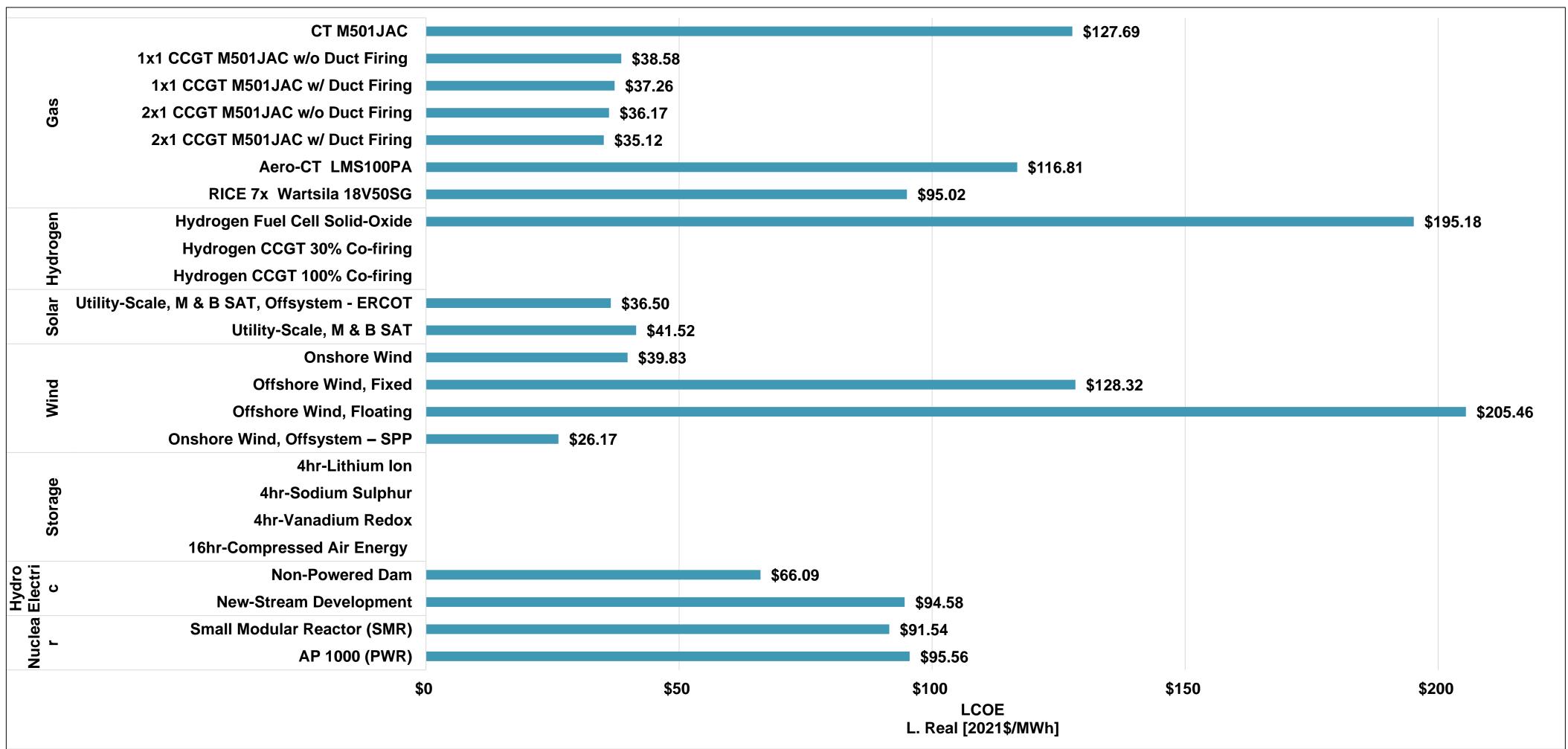
Gas Price Forecast and Sensitivities

Coal Price Forecast and Sensitivities

EAL Delivered Coal Price Forecast (Nominal \$/MMBtu)


Ŧ

2042


CO₂ Price Forecast and Sensitivities

Overview: Levelized Cost of Electricity

LCOE is calculated as levelized total cost over the book life divided by the levelized energy output over the book life. (based on 12.2020 EAL WACC)

• LCOE for storage is not shown because as storage just moves MWh from one time to another there is no actual 'output' of energy therefore it's undefined.

• ITC normalized over useful life and assumes an extended ITC for Solar, PTC for On-shore Wind, and ITC for Off-shore Wind. Assumes solar projects online between 2021 and 2023 receive 30% ITC. Assumes solar projects online between 2024 and 2025 receive 26% ITC. Solar projects online beginning 2026 and beyond receive 10% ITC. Assumes on-shore wind projects online in 2021 receive 80% PTC. Assumes on-shore wind projects online between 2022 and 2025 receive 60% PTC. On-shore wind projects online in 2026 or beyond are not eligible for tax credits. Assumes off-shore wind projects online between 2021 and 2035 receive 30% ITC.

Assumptions: Extended PTC & ITC

Required Construction Start [yr.]	Required Online Date [yr.]	PTC [%]	ITC [%]			
Solar						
2016 – 2019	2021 – 2023	N/A	30%			
2020 – 2022	2024 -2025	N/A	26%			
Any	2026 - Beyond	N/A	10%			
On-shore Wind	On-shore Wind					
2017	2021	80%	24%			
2018	2022	60%	18%			
2020 or 2021	2023-2024	60%	18%			
2021	2025	60%	18%			
N/A	2026- Beyond	N/A	N/A			
Off-shore Wind	Off-shore Wind					
2017 – 2025	2021 -2035	N/A	30%			
N/A	2035 – Beyond	N/A	N/A			

Notes:

PTC: Production Tax Credit

ITC: Investment Tax Credit

PTC and ITC assumptions included in the EAL IRP evaluation will assume eligibility that is most favorable for each technology and online date. As resources are procured, eligibility will be determined on a project-specific basis.

Assumptions: Renewables LCOE (Solar PV & Wind – MISO South)

Modeling Assumptions

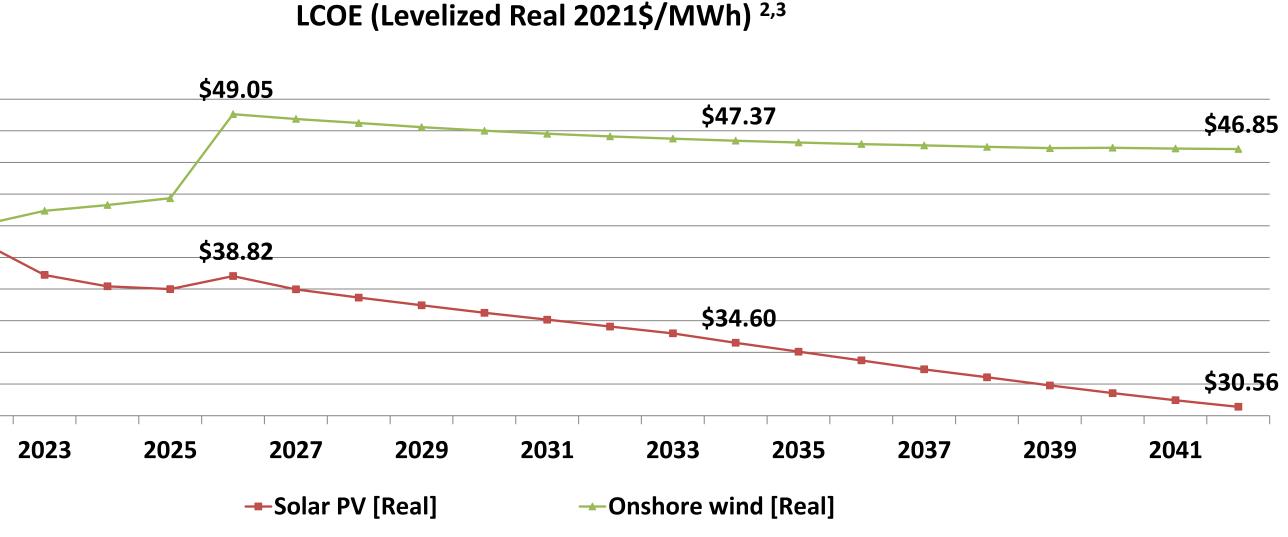
Solar Wind	· · · · · · · · · · · · · · · · · · ·
Solal Wind	'ind
Size (MW) 100 200	:00
Fixed O&M (Levelized R. 2021\$/KWac-yr) ¹ \$10.31 \$37.59	7.59
Useful Life (years) 30 30	30
MACRS Depreciation (years) 5 5	5
Capacity Factor 25.6% 36.8%	.8%
DC:AC 1.30 N/A	J/A
Hourly Profile Modeling Software PlantPredict NREL SA	L SAM

Note:

1.Solar and Wind Fixed O&M excludes property tax and insurance; Solar includes inverter replacement in year 16.

2.LCOE is calculated as levelized total cost over the book life divided by the levelized energy output over the book life. (based on 12.2020 EAL WACC)

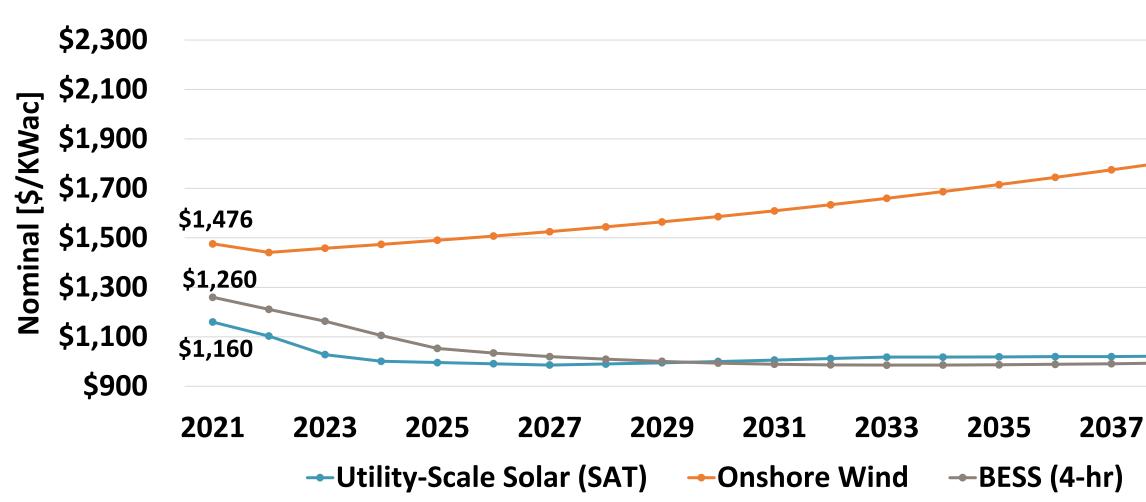
3.ITC normalized over useful life and assumes an extended ITC for Solar, PTC for On-shore Wind, and ITC for Off-shore Wind. Assumes solar projects online between 2021 and 2023 receive 30% ITC. Assumes solar projects online between 2024 and 2025 receive 26% ITC. Solar projects online beginning 2026 and beyond receive 10% ITC.


Assumes on-shore wind projects online in 2021 receive 80% PTC. Assumes on-shore wind projects online between 2022 and 2025 receive 60% PTC. On-shore wind projects online in 2026 or beyond are not eligible for tax credits.

Assumes off-shore wind projects online between 2021 and 2035 receive 30% ITC.

Source:

IHS 2021: All rights reserved. The use of this content was authorized in advance. Any further use or redistribution of this content is strictly prohibited without prior written permission by IHS Markit.



Assumptions for Installed Capital Cost: Renewables & Storage

Installed Capital Cost Forecast (Nominal [\$/Kwac], 2021 to 2050)^{1,2}

Note:

1. Utility-scale Solar PV is an average between mono and bi-facial with Single Axis Tracking.

2. Battery Installed Capital Cost does not include augmentation.

Source:

IHS 2021: All rights reserved. The use of this content was authorized in advance. Any further use or redistril strictly prohibited without prior written permission by IHS Markit.

		Utility-Scale Solar (SAT)	On-shore Wind	BESS (4-Hr)
\$1,947	2021	\$1,160	\$1,476	\$1,260
	2022	\$1,103	\$1,441	\$1,211
	2023	\$1,028	\$1,458	\$1,163
	2024	\$1,001	\$1,474	\$1,106
	2025	\$996	\$1,490	\$1,053
	2026	\$991	\$1,507	\$1,034
	2027	\$986	\$1,525	\$1,020
\$1,013	2028	\$990	\$1,545	\$1,009
\$1,032	2029	\$995	\$1,565	\$1,001
Ş1,05Z	2030	\$1,000	\$1,586	\$994
2039 2041	2031	\$1,006	\$1,609	\$989
	2032	\$1,012	\$1,634	\$987
	2033	\$1,018	\$1,660	\$986
	2034	\$1,018	\$1,687	\$986
	2035	\$1,019	\$1,715	\$987
	2036	\$1,020	\$1,745	\$989
	2037	\$1,020	\$1,775	\$991
	2038	\$1,022	\$1,806	\$994
	2039	\$1,023	\$1,838	\$997
ribution of this content is	2040	\$1,025	\$1,876	\$1,001
	2041	\$1,028	\$1,911	\$1,007
	2042	\$1,032	\$1,947	\$1,013

Load Forecast Assumptions by Future

	Electric Vehicles (GWh)					
	Future 1	Future 2	Future 3	Future 4		
	(BP21)	(BP21)	(2055)	(2040)		
2023	4	4	27	49		
2024	5	5	37	80		
2025	6	6	50	130		
2026	8	8	68	207		
2027	10	10	91	327		
2028	12	12	120	514		
2029	14	14	159	800		
2030	17	17	211	1,222		
2031	20	20	280	1,793		
2032	25	25	369	2,497		
2033	30	30	486	3,292		
2034	36	36	640	4,132		
2035	43	43	838	4,979		
2036	52	52	1,092	5,807		
2037	63	63	1,412	6,603		
2038	75	75	1,810	7,363		
2039	90	90	2,291	8,090		
2040	108	108	2,851	8,781		
2041	128	128	3,566	9,530		
2042	153	153	4,484	10,344		

Bu			_
КП		In	σ
	U		S

	Future 1	Future 2	Future 3	Future 4
2023	80	80	80	25
2024	98	98	98	34
2025	114	114	114	45
2026	130	130	130	57
2027	147	147	147	71
2028	164	164	164	87
2029	181	181	181	105
2030	198	198	198	125
2031	216	216	216	165
2032	234	234	234	193
2033	253	253	253	262
2034	271	271	271	355
2035	291	291	291	477
2036	310	310	310	638
2037	331	331	331	846
2038	351	351	351	1,111
2039	373	373	373	1,442
2040	395	395	395	1,843
2041	418	418	418	2,244
2042	440	440	440	2,646

Electrification (GWh)

BTM Solar (GWh)

	Future 1	Future 2	Future 3	Future
2023	(35)	(25)	(35)	(3
2024	(42)	(31)	(42)	(4
2025	(50)	(37)	(50)	(5
2026	(58)	(43)	(58)	(5
2027	(67)	(50)	(70)	(7
2028	(77)	(57)	(86)	(8
2029	(90)	(63)	(108)	(10
2030	(112)	(74)	(144)	(14
2031	(138)	(84)	(189)	(18
2032	(168)	(95)	(243)	(24
2033	(199)	(103)	(306)	(30
2034	(233)	(110)	(381)	(38
2035	(269)	(115)	(467)	(46
2036	(306)	(117)	(566)	(56
2037	(343)	(119)	(675)	(67
2038	(384)	(121)	(805)	(80
2039	(432)	(123)	(962)	(96
2040	(489)	(125)	(1,155)	(1,15
2041	(552)	(127)	(1,384)	(1,38
2042	(627)	(129)	(1,667)	(1,66

Load Forecast Assumptions by Future

Refinery Utilization Due to EVs (GWh)					
	Future 1	Future 2	Future 3	Future 4	
2023	0	0	(4)	(23)	
2024	0	0	(4)	(37)	
2025	0	0	(5)	(57)	
2026	0	0	(6)	(81)	
2027	0	0	(8)	(103)	
2028	0	0	(9)	(125)	
2029	0	0	(11)	(146)	
2030	0	0	(9)	(162)	
2031	0	0	2	(171)	
2032	0	0	2	(189)	
2033	0	0	12	(197)	
2034	0	0	20	(207)	
2035	0	0	17	(227)	
2036	0	0	26	(236)	
2037	0	0	32	(246)	
2038	0	0	28	(266)	
2039	0	0	35	(275)	
2040	0	0	38	(287)	
2041	0	0	41	(299)	
2042	0	0	44	(311)	

	Future 1	Future 2	Future 3	Future 4
2023	0	(82)	0	4
2024	0	(84)	0	8
2025	0	(85)	0	12
2026	0	(86)	0	16
2027	0	(87)	0	20
2028	0	(87)	0	24
2029	0	(87)	0	28
2030	0	(95)	0	32
2031	0	(121)	0	35
2032	0	(150)	0	39
2033	0	(179)	0	43
2034	0	(207)	0	47
2035	0	(235)	0	51
2036	0	(263)	0	55
2037	0	(291)	0	59
2038	0	(320)	0	62
2039	0	(348)	0	66
2040	0	(375)	0	70
2041	0	(401)	0	74
2042	0	(428)	0	78

Res/Com Customer Growth (GWh)

Industrial Growth (GWh)

	Future 1	Future 2	Future 3	Future
2023	0	(1,003)	0	13
2024	0	(1,009)	0	13
2025	0	(1,003)	0	13
2026	0	(1,003)	0	13
2027	0	(1,003)	0	13
2028	0	(1,003)	0	13
2029	0	(1,003)	0	13
2030	0	(1,003)	0	13
2031	0	(1,003)	0	13
2032	0	(1,003)	0	13
2033	0	(1,003)	0	13
2034	0	(1,003)	0	13
2035	0	(1,003)	0	13
2036	0	(1,003)	0	13
2037	0	(1,003)	0	13
2038	0	(1,003)	0	13
2039	0	(1,003)	0	13
2040	0	(1,003)	0	13
2041	0	(1,003)	0	13
2042	0	(1,003)	0	13

	4	
	8	
)	8	
)	8	
)	8	
	8	
)	8	
	8	
	8	
	8	
)	8	
)	8	
)	8	
	8	
)	8	
)	8 8	
)	8	
)	8	
)	8	
)	8	

