

Entergy Arkansas, LLC White Bluff Steam Electric Station Landfill Cells 1-4

2023 Annual Groundwater Monitoring and Corrective Action Report

Prepared in Compliance with the EPA Final Rule for the Disposal of Coal Combustion Residuals Title 40 CFR Part 257

Prepared for:

PO Box 551 Little Rock, Arkansas 72203

Prepared by:

8550 United Plaza Blvd. Suite 502 Baton Rouge, LA 70809

January 31, 2024

TABLE OF CONTENTS

EX	ECUTIVE SUMMARY	1
1.	INTRODUCTION	2
2.	GROUNDWATER MONITORING SYSTEM	3
3.	INSTALLED OR DECOMISSIONED WELLS DURING 2023	4
	GROUNDWATER MONITORING DATA	
5.	STATUS SUMMARY OF THE 2023 GROUNDWATER MONITORING PROGRAM	6
	PROJECTED ACTIVITIES FOR 2024	

LIST OF APPENDICES

APPENDIX A: Site Map

APPENDIX B: Groundwater Monitoring Data

APPENDIX C: Alternate Source Demonstrations

EXECUTIVE SUMMARY

Entergy Arkansas, LLC (Entergy), operates a coal ash disposal landfill (Landfill) for the disposal of coal combustion residuals (CCR) at the White Bluff Steam Electric Station (Plant) located near Redfield, Arkansas. The Landfill receives CCR generated from the combustion of coal at the Plant. Management of the CCR at the Landfill is performed pursuant to national criteria established in Title 40 of the Code of Federal Regulations (40 CFR), Part 257 (CCR Rule), effective April 19, 2015, and subsequent revisions to the CCR Rule.

The Plant conducted two semi-annual detection monitoring events in 2023 for the Landfill CCR unit monitoring well network per 40 CFR § 257.94. The statistical analyses completed for the second semi-annual 2022 and first semi-annual 2023 sampling event analytical data identified potential statistically significant increases (SSIs); therefore, alternate source demonstrations (ASDs) were performed for both semi-annual detection monitoring events and are attached to this report. Each of the ASDs performed were successful which resulted in the Landfill continuing to operate under the detection monitoring program. The Landfill CCR unit operated under the detection monitoring program (40 CFR § 257.94) during the duration of 2023.

1. INTRODUCTION

Entergy Arkansas, LLC (Entergy), operates the Landfill for the disposal of CCRs at the Plant located near Redfield, Arkansas (Lat: 34.421658 / Long: -92.139455). The Landfill receives CCR generated from the combustion of coal at the Plant. The CCR Landfill is managed in accordance with the national criteria established by the CCR Rule. Entergy installed a groundwater monitoring system at the Landfill that is subject to the groundwater monitoring and corrective action requirements provided under §257.90 through §257.98 of the CCR rule. In accordance with §257.90(e) of the CCR rule, Entergy must prepare an annual report that provides information regarding the groundwater monitoring and corrective action program at the Landfill.

2. GROUNDWATER MONITORING SYSTEM

The Landfill's groundwater monitoring system consists of 23 monitoring wells as shown on Figure 1 included in Appendix A. Pursuant to §257.91(f) of the CCR rule, a qualified Arkansas-registered professional engineer has certified the groundwater monitoring system, which was designed and constructed to meet the requirements of §257.91.

3. INSTALLED OR DECOMISSIONED WELLS DURING 2023

Entergy did not install any new wells or decommission any existing wells in the certified groundwater monitoring system during 2023.

4. GROUNDWATER MONITORING DATA

In accordance with §257.90(e)(3), all monitoring data obtained under §257.90 through §257.98 during 2023 are provided in Appendix B. Data include:

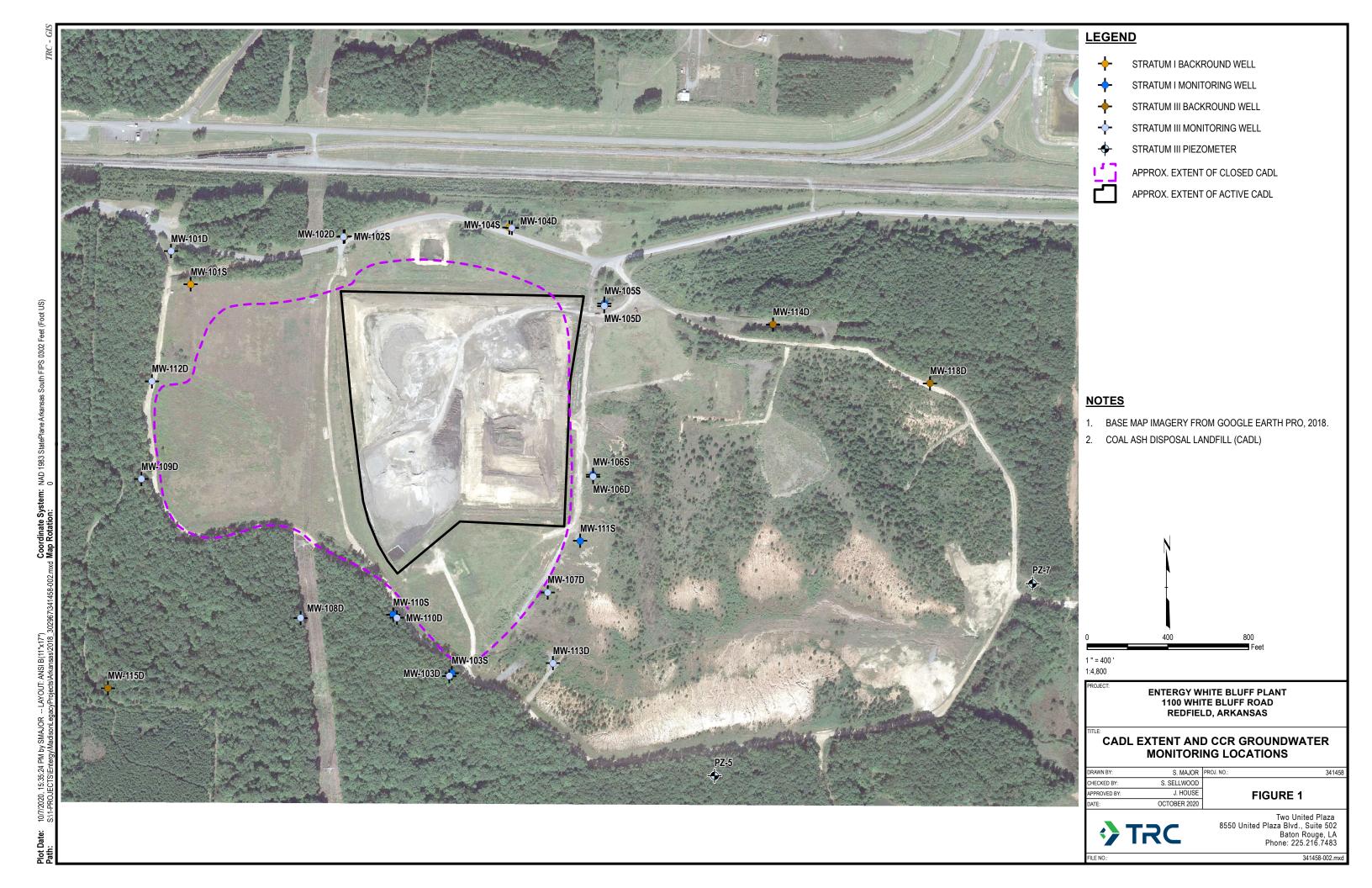
- Summary of the number of groundwater samples that were collected for analysis for each background and downgradient well;
- Dates the samples were collected; and
- Whether the sample was collected as part of detection or assessment monitoring.

5. STATUS SUMMARY OF THE 2023 GROUNDWATER MONITORING PROGRAM

Groundwater monitoring was performed in accordance with the detection monitoring requirements of §257.94. A summary of activities related to groundwater detection monitoring performed during 2023 is provided in the list below:

- In accordance with §257.94(b), semiannual detection monitoring was performed during the first half (June) and second half (November) of 2023 for analysis of Appendix III parameters (boron, calcium, chloride, fluoride, pH, sulfate and total dissolved solids (TDS)).
- Statistical evaluation of the semiannual detection monitoring data was performed in accordance with the statistical method certified by a qualified Arkansas-registered professional engineer. The certified statistical method has been posted to Entergy's CCR Rule Compliance Data and Information website.
- In 2023, Entergy completed a successful alternate source demonstration (ASD) per §257.94(e)(2) in response to potential statistically significant increases (SSIs) identified during the statistical evaluation of the data generated from the second half 2022 semi-annual detection monitoring event. As required by §257.94(e)(2), a copy of the ASD is included in Appendix C. Based on the successful evaluation conducted and results presented in the ASD, Entergy continued with detection monitoring in accordance with §257.94.
- The first half 2023 semi-annual detection monitoring sampling was performed during June 2023. Based on statistical evaluation of the data potential SSIs were identified for boron, calcium, chloride, fluoride, and total dissolved solids (TDS).
- Entergy completed a successful ASD per §257.94(e)(2) for the potential SSIs identified during the first half 2023 semi-annual detection monitoring event. As required by §257.94(e)(2), a copy of the ASD is included in Appendix C. Entergy continued with detection monitoring in accordance with §257.94.
- The second half 2023 semi-annual detection monitoring sampling was performed during November 2023. Statistical evaluation of the data will be performed during 2024 to determine if any SSIs are identified in accordance with §257.93(h).

- No problems were encountered during 2023 regarding the detection monitoring and corrective action system. Therefore, no actions were required to modify the system.
- The Landfill CCR unit remained in detection monitoring for the duration of 2023.


6. PROJECTED ACTIVITIES FOR 2024

Planned activities for the program during 2024 are listed below:

- Statistical evaluation of the second-half 2023 and first-half 2024 detection monitoring sampling data will be performed during 2024 to determine if any SSIs are identified.
- Semi-annual detection monitoring is planned for June and December 2024.

APPENDIX A SITE MAP

APPENDIX B GROUNDWATER MONITORING DATA

		rgy White Bluff CADL Netw	ork I				
	Detection Monitoring Sam						
	Sampled						
	6/6-6/8/2023	11/14-11/17/2023					
	9	7,	Number of				
Well ID		_	Samples Collected				
MW-101S	Х	Х	2				
MW-102S	X	X	2				
MW-103S	X	1	1				
MW-104S	X	X	2				
MW-105S	X	X	2				
MW-106S	X	X	2				
MW-110S	Х	Х	2				
MW-111S	X	Х	2				
MW-101D	X	Х	2				
MW-102D	X	X	2				
MW-103D	X	X	2				
MW-104D	X	X	2				
MW-105D	X	X	2				
MW-106D	X	X	2				
MW-107D	X	X	2				
MW-108D	X	X	2				
MW-109D	X	X	2				
MW-110D	X	X	2				
MW-112D	X	X	2				
MW-113D	X	X	2				
MW-114D	X	X	2				
MW-115D	X	X	2				
MW-118D	X	X	2				

Notes:

All samples collected through 2023 were part of the detection monitoring program. No samples collected through 2023 were part of an assessment monitoring program.

¹ MW-103S was not sampled in November 2023 due to high turbidity.

Field p	H Data Collected during 2023, Entergy Whi	te Bluff CADL network
Well ID	Date Collected	pH (su)
M/M/ 1015	06/08/2023	4.67
10100-1013	MW-101S	6.04
MW-102S	06/08/2023	4.28
10100-1023	11/16/2023	6.02
M/M/_102S	06/07/2023	4.56
10100-1033	11/15/2023	5.04
M/M/_104S	06/07/2023	5.00
10100-1043	11/14/2023	5.50
M/M/_105S	06/07/2023	5.71
10100-1033	11/16/2023	6.02
MW-1065	06/07/2023	4.02
MW-106S	11/17/2023	4.00
M/M/_110S	06/07/2023	4.16
MW-106S 11/17 06/07 11/15 06/07 11/15 06/07	11/15/2023	4.80
M/M/_111S	06/07/2023	3.98
10100-1113	11/16/2023	3.86
M/M/ 101D	06/08/2023	1.55
IVIVV-101D	11/17/2023	7.06
M/M-102D	06/08/2023	3.68
1V1VV-102D	11/17/2023	7.47
MW-103D	06/07/2023	5.13
10100-1020	11/15/2023	7.90
MW-104D	06/07/2023	6.19
14144-1040	11/14/2023	7.61
MW-105D	06/07/2023	5.11
14144-1020	11/14/2023	7.71

Field pH Data C	ollected during 2023, Entergy White Bluf	f CADL network
Well ID	Date Collected	pH (su)
MW-106D	06/07/2023	6.75
MM-109D	06/07/2023 11/17/2023 06/06/2023 11/16/2023 06/07/2023 11/16/2023 06/08/2023 11/16/203 06/06/2023 11/17/2023 06/08/2023 11/15/203 06/08/2023 11/15/203 06/08/2023 11/15/2023 06/08/2023 11/16/2023	9.99
MW-107D	06/06/2023	1.75
WW-107D	11/16/2023	8.01
MW-108D	06/07/2023	5.01
IVIVV-108D	11/16/2023	7.74
MW-109D	06/08/2023	3.84
1V1VV-103D	11/16/2023	7.80
MW-110D	06/06/2023	6.92
IVIVV-110D	11/16/203	8.21
MW-112D	06/06/2023	5.65
IVIVV-112D	11/17/2023	7.57
MW-113D	06/08/2023	6.40
WW-113D	11/15/203	7.30
MW-114D	06/08/2023	7.11
WW-114D	11/15/2023	7.82
MW-115D	06/08/2023	7.26
101.00-1120	11/16/2023	7.86
MW-118D	06/06/2023	5.40
IAI AA-118D	11/17/2023	7.18

Pace Analytical® ANALYTICAL REPORT

August 28, 2023

Revised Report

GBMc & Associates - Bryant, AR

Sample Delivery Group: L1624861

Samples Received: 06/10/2023

Project Number: 1145-21-080

Description: Entergy - White Bluff

WHITE BLUFF Site:

Report To: Jonathan Brown

219 Brown Lane

Little Rock, AR 72022

Entire Report Reviewed By:

Drittine Boyd

Brittnie L Boyd Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	4
Cn: Case Narrative	11
Sr: Sample Results	12
RP-1 L1624861-01	12
RP-2 L1624861-02	13
RP-3 L1624861-03	14
RP-4 L1624861-04	15
RP-5 L1624861-05	16
RP-6 L1624861-06	17
RP-7 L1624861-07	18
RP-8 L1624861-08	19
RP-9 L1624861-09	20
RP-10 L1624861-10	21
FIELD BLANK L1624861-11	22
DUPLICATE RP-2 L1624861-12	23
MW-101S L1624861-13	24
MW-102S L1624861-14	25
MW-103S L1624861-15	26
MW-104S L1624861-16 MW-105S L1624861-17	27 28
	29
MW-106S L1624861-18 MW-110S L1624861-19	
MW-110S L1624861-19 MW-111S L1624861-20	30 31
MW-101D L1624861-21	32
MW-102D L1624861-22	33
MW-103D L1624861-23	34
MW-104D L1624861-24	35
MW-105D L1624861-25	36
MW-106D L1624861-26	37
MW-107D L1624861-27	38
MW-108D L1624861-28	39
MW-109D L1624861-29	40
MW-110D L1624861-30	41
MW-112D L1624861-31	42
MW-113D L1624861-32	43
MW-114D L1624861-33	44
MW-115D L1624861-34	45
MW-118D L1624861-35	46
	_

¹Cp

FIELD BLANK 1 L1624861-36	47
DUPLICATE 1 MW-106S L1624861-37	48
DUPLICATE 3 MW-112D L1624861-38	49
DUPLICATE 2 MW-110D L1624861-39	50
Qc: Quality Control Summary	51
Gravimetric Analysis by Method 2540 C-2011	51
Wet Chemistry by Method 9056A	54
Metals (ICP) by Method 6010B	58
Metals (ICPMS) by Method 6020	60
GI: Glossary of Terms	62
Al: Accreditations & Locations	63
Sc: Sample Chain of Custody	64

RP-1 L1624861-01 GW			Collected by Will Glenn	Collected date/time 06/05/23 16:08	Received da 06/10/23 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG2075832	1	06/12/23 10:09	06/12/23 12:22	ARD	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG2083289	10	06/23/23 16:37	06/23/23 16:37	GEB	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG2083289	100	06/23/23 16:51	06/23/23 16:51	GEB	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG2075641	1	06/13/23 11:44	06/20/23 23:36	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG2075651	1	06/13/23 11:52	06/13/23 18:41	LD	Mt. Juliet, TN
			Collected by Will Glenn	Collected date/time 06/05/23 12:00	Received da 06/10/23 09:	
RP-2 L1624861-02 GW	D	D.1				
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG2075832	1	06/12/23 10:09	06/12/23 12:22	ARD	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG2083289	1	06/23/23 17:04	06/23/23 17:04	GEB	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG2075641	1	06/13/23 11:44	06/20/23 23:38	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG2075651	1	06/13/23 11:52	06/13/23 18:44	LD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
RP-3 L1624861-03 GW			Will Glenn	06/06/23 14:14	06/10/23 09	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG2075832	1	06/12/23 10:09	06/12/23 12:22	ARD	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG2083289	10	06/23/23 18:38	06/23/23 18:38	GEB	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG2083289	5	06/23/23 17:58	06/23/23 17:58	GEB	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG2075641	1	06/13/23 11:44	06/20/23 23:41	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG2075651	1	06/13/23 11:52	06/13/23 18:48	LD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
RP-4 L1624861-04 GW			Will Glenn	06/06/23 15:22	06/10/23 09	.00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG2075832	1	06/12/23 10:09	06/12/23 12:22	ARD	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG2083289	1	06/23/23 18:52	06/23/23 18:52	GEB	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG2075641	1	06/13/23 11:44	06/20/23 23:44	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG2075651	1	06/13/23 11:52	06/13/23 18:51	LD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
RP-5 L1624861-05 GW			Will Glenn	06/06/23 09:20	06/10/23 09	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG2075832	1	06/12/23 10:09	06/12/23 12:22	ARD	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG2073632 WG2083289	1	06/23/23 19:05	06/23/23 19:05	GEB	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG2083289 WG2075641	1	06/13/23 11:44	06/20/23 23:52	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG2075651	1	06/13/23 11:52	06/13/23 19:04	LD	Mt. Juliet, TN
media (or may of method oozo	1102073031	1	30/10/20 11.32	00/10/20 10:01	20	me. Junet, III
RP-6 L1624861-06 GW			Collected by Will Glenn	Collected date/time 06/05/23 14:00	Received da 06/10/23 09:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
	200		date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG2075832	1	06/12/23 10:09	06/12/23 12:22	ARD	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG2083289	1	06/23/23 19:18	06/23/23 19:18	GEB	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG2083289	10	06/23/23 19:32	06/23/23 19:32	GEB	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG2075641	1	06/13/23 11:44	06/20/23 23:55	ZSA	Mt. Juliet, TN
ACCOUNT:	PROJECT:		SDG:	DAT	E/TIME:	

¹Cp

RP-6 L1624861-06 GW			Collected by Will Glenn	Collected date/time 06/05/23 14:00	Received da 06/10/23 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Metals (ICPMS) by Method 6020	WG2075651	1	06/13/23 11:52	06/13/23 18:28	LD	Mt. Juliet, TN
RP-7 L1624861-07 GW			Collected by Will Glenn	Collected date/time 06/06/23 10:27	Received da 06/10/23 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG2075832	1	06/12/23 10:09	06/12/23 12:22	ARD	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG2083289	1	06/23/23 19:45	06/23/23 19:45	GEB	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG2075641	1	06/13/23 11:44	06/20/23 23:58	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG2075651	1	06/13/23 11:52	06/13/23 19:07	LD	Mt. Juliet, TN
RP-8 L1624861-08 GW			Collected by Will Glenn	Collected date/time 06/06/23 11:31	Received da 06/10/23 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG2075832	1	06/12/23 10:09	06/12/23 12:22	ARD	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG2083289	1	06/23/23 19:59	06/23/23 19:59	GEB	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG2075641	1	06/13/23 11:44	06/21/23 00:01	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG2075651	1	06/13/23 11:52	06/13/23 19:10	LD	Mt. Juliet, TN
RP-9 L1624861-09 GW			Collected by Will Glenn	Collected date/time 06/06/23 13:00	Received da 06/10/23 09	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG2075832	1	06/12/23 10:09	06/12/23 12:22	ARD	Mt. Juliet, TN
Net Chemistry by Method 9056A	WG2083289	1	06/23/23 20:14	06/23/23 20:14	GEB	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG2075641	1	06/13/23 11:44	06/21/23 00:04	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG2075651	1	06/13/23 11:52	06/13/23 19:14	LD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
RP-10 L1624861-10 GW			Will Glenn	06/06/23 16:47	06/10/23 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG2075832	1	06/12/23 10:09	06/12/23 12:22	ARD	Mt. Juliet, TN
Net Chemistry by Method 9056A	WG2083289	1	06/23/23 20:28	06/23/23 20:28	GEB	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG2083289	5	06/23/23 20:42	06/23/23 20:42	GEB	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG2075641	1	06/13/23 11:44	06/21/23 00:07	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG2075651	1	06/13/23 11:52	06/13/23 19:17	LD	Mt. Juliet, TN
FIELD BLANK L1624861-11 GW			Collected by Will Glenn	Collected date/time 06/05/23 12:05	Received da 06/10/23 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG2075832	1	06/12/23 10:09	06/12/23 12:22	ARD	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG2083289	1	06/23/23 21:22	06/23/23 21:22	GEB	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG2075641	1	06/13/23 11:44	06/21/23 00:10	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG2075651	1	06/13/23 11:52	06/13/23 19:20	LD	Mt. Juliet, TN

DUPLICATE RP-2 L1624861-12 GW			Collected by Will Glenn	Collected date/time 06/05/23 12:01	Received date 06/10/23 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG2075832	1	06/12/23 10:09	06/12/23 12:22	ARD	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG2083289	1	06/23/23 21:36	06/23/23 21:36	GEB	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG2075641	1	06/13/23 11:44	06/21/23 00:13	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG2075651	1	06/13/23 11:52	06/13/23 19:23	LD	Mt. Juliet, TN
MW-101S L1624861-13 GW			Collected by Will Glenn	Collected date/time 06/08/23 14:11	Received da: 06/10/23 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG2075111	1	06/12/23 18:48	06/13/23 02:36	MMF	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG2083289	1	06/23/23 21:49	06/23/23 21:49	GEB	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG2075641	1	06/13/23 11:44	06/21/23 00:15	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG2075651	1	06/13/23 11:52	06/13/23 19:27	LD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-102S L1624861-14 GW			Will Glenn	06/08/23 15:47	06/10/23 09:	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG2075111	1	06/12/23 18:48	06/13/23 02:36	MMF	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG2083289	1	06/23/23 22:03	06/23/23 22:03	GEB	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG2075641	1	06/13/23 11:44	06/21/23 00:18	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG2075651	1	06/13/23 11:52	06/13/23 19:30	LD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
MW-103S L1624861-15 GW			Will Glenn	06/07/23 11:44	06/10/23 09:	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG2075832	1	06/12/23 10:09	06/12/23 12:22	ARD	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG2083289	1	06/23/23 22:16	06/23/23 22:16	GEB	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG2075641	1	06/13/23 11:44	06/21/23 00:27	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG2075651	1	06/13/23 11:52	06/13/23 19:33	LD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-104S L1624861-16 GW			Will Glenn	06/07/23 14:50	06/10/23 09:	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG2075832	1	06/12/23 10:09	06/12/23 12:22	ARD	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG2075832 WG2083289	1	06/23/23 22:31	06/23/23 22:31	GEB	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG2083289 WG2075641	1	06/13/23 11:44	06/21/23 00:30	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG2075651	1	06/13/23 11:52	06/13/23 19:44	LD	Mt. Juliet, TN
						,
MW-105S L1624861-17 GW			Collected by Will Glenn	Collected date/time 06/07/23 15:52	Received data 06/10/23 09:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG2075832	1	06/12/23 10:09	06/12/23 12:22	ARD	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG2083289	1	06/23/23 22:44	06/23/23 22:44	GEB	Mt. Juliet, TN
	WG2075641	1	06/13/23 11:44	06/21/23 00:32	ZSA	Mt. Juliet, TN
Metals (ICP) by Method 6010B Metals (ICPMS) by Method 6020	WG2075651	1	06/13/23 11:52	06/13/23 19:47	LD	Mt. Juliet, TN

			Collected by	Collected date/time	Received da	te/time
MW-106S L1624861-18 GW			Will Glenn	06/07/23 09:15	06/10/23 09:	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG2075832	1	06/12/23 10:09	06/12/23 12:22	ARD	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG2083289	1	06/23/23 22:57	06/23/23 22:57	GEB	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG2083289	5	06/23/23 23:11	06/23/23 23:11	GEB	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG2075641	1	06/13/23 11:44	06/21/23 00:35	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG2075651	1	06/13/23 11:52	06/13/23 19:50	LD	Mt. Juliet, TN
			Collected by	Collected date/time		
MW-110S L1624861-19 GW			Will Glenn	06/07/23 13:42	06/10/23 09:	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG2075832	1	06/12/23 10:09	06/12/23 12:22	ARD	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG2083289	1	06/24/23 00:18	06/24/23 00:18	GEB	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG2075641	1	06/13/23 11:44	06/21/23 00:38	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG2075651	1	06/13/23 11:52	06/13/23 19:53	LD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-111S L1624861-20 GW			Will Glenn	06/07/23 10:44	06/10/23 09:	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG2075832	1	06/12/23 10:09	06/12/23 12:22	ARD	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG2083289	1	06/23/23 23:24	06/23/23 23:24	GEB	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG2083289	5	06/24/23 00:04	06/24/23 00:04	GEB	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG2075641	1	06/13/23 11:44	06/20/23 23:24	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG2075651	1	06/13/23 11:52	06/13/23 19:57	LD	Mt. Juliet, TN
			Collected by	Collected date/time		
MW-101D L1624861-21 GW			Will Glenn	06/08/23 18:43	06/10/23 09:	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG2075111	1	06/12/23 18:48	06/13/23 02:36	MMF	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG2083802	1	06/24/23 11:41	06/24/23 11:41	GEB	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG2075642	1	06/13/23 11:47	06/29/23 00:46	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG2075653	1	06/13/23 11:49	06/13/23 17:39	LD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-102D L1624861-22 GW			Will Glenn	06/08/23 17:36	06/10/23 09:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Constructed Applicate by M. H. 10540 C 2011	1110003544		date/time	date/time	1445	NAL 1 11 - TV
Gravimetric Analysis by Method 2540 C-2011	WG2075111	1	06/12/23 18:48	06/13/23 02:36	MMF	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG2083802	1	06/24/23 12:35	06/24/23 12:35	GEB	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG2075642	1	06/13/23 11:47	06/29/23 00:49	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG2075653	1	06/13/23 11:49	06/13/23 17:42	LD	Mt. Juliet, TN
			Collected by	Collected date/time		
MW-103D L1624861-23 GW			Will Glenn	06/07/23 12:11	06/10/23 09:	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG2075832	1	06/12/23 10:09	06/12/23 12:22	ARD	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG2083802	1	06/24/23 12:48	06/24/23 12:48	GEB	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG2075642	1	06/13/23 11:47	06/29/23 00:51	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG2075653	1	06/13/23 11:49	06/13/23 17:45	LD	Mt. Juliet, TN
ACCOLINT:	PRO IFCT:		SDG:	DAT	F/TIME:	

¹Cp

			Collected by	Collected date/time		
MW-104D L1624861-24 GW			Will Glenn	06/07/23 16:05	06/10/23 09:	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG2075832	1	06/12/23 10:09	06/12/23 12:22	ARD	Mt. Juliet, T
Net Chemistry by Method 9056A	WG2083802	1	06/24/23 13:02	06/24/23 13:02	GEB	Mt. Juliet, T
Metals (ICP) by Method 6010B	WG2075642	1	06/13/23 11:47	06/29/23 00:54	ZSA	Mt. Juliet, T
Metals (ICPMS) by Method 6020	WG2075653	1	06/13/23 11:49	06/13/23 17:49	LD	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
MW-105D L1624861-25 GW			Will Glenn	06/06/23 12:30	06/10/23 09:	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG2075855	1	06/12/23 10:27	06/12/23 12:46	AS	Mt. Juliet, T
Net Chemistry by Method 9056A	WG2083802	1	06/24/23 13:42	06/24/23 13:42	GEB	Mt. Juliet, T
Metals (ICP) by Method 6010B	WG2075642	1	06/13/23 11:47	06/29/23 01:02	ZSA	Mt. Juliet, T
Metals (ICPMS) by Method 6020	WG2075653	1	06/13/23 11:49	06/13/23 18:00	LD	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
MW-106D L1624861-26 GW			Will Glenn	06/07/23 10:20	06/10/23 09:	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
0	W02075055		date/time	date/time	46	14. 1 P . T
Gravimetric Analysis by Method 2540 C-2011	WG2075855	1	06/12/23 10:27	06/12/23 12:46	AS	Mt. Juliet, T
Wet Chemistry by Method 9056A	WG2083802	1	06/24/23 13:56	06/24/23 13:56	GEB	Mt. Juliet, T
Metals (ICP) by Method 6010B	WG2075642	1	06/13/23 11:47	06/29/23 01:05	ZSA	Mt. Juliet, T
Metals (ICPMS) by Method 6020	WG2075653	1	06/13/23 11:49	06/13/23 18:03	LD	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
MW-107D L1624861-27 GW			Will Glenn	06/06/23 10:20	06/10/23 09:	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG2075855	1	06/12/23 10:27	06/12/23 12:46	AS	Mt. Juliet, T
Net Chemistry by Method 9056A	WG2083802	1	06/24/23 14:09	06/24/23 14:09	GEB	Mt. Juliet, T
Metals (ICP) by Method 6010B	WG2075642	1	06/13/23 11:47	06/29/23 01:08	ZSA	Mt. Juliet, T
Metals (ICPMS) by Method 6020	WG2075653	1	06/13/23 11:49	06/13/23 18:06	LD	Mt. Juliet, T
			Collected by	Collected date/time	Received da	ta/tima
MW-108D L1624861-28 GW			Will Glenn	06/07/23 13:45	06/10/23 09:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG2075855	1	06/12/23 10:27	06/12/23 12:46	AS	Mt. Juliet, T
Wet Chemistry by Method 9056A	WG2083802	1	06/24/23 14:22	06/24/23 14:22	GEB	Mt. Juliet, T
Metals (ICP) by Method 6010B	WG2075642	1	06/13/23 11:47	06/29/23 01:10	ZSA	Mt. Juliet, T
Metals (ICPMS) by Method 6020	WG2075653	1	06/13/23 11:49	06/13/23 18:10	LD	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
MW-109D L1624861-29 GW			Will Glenn	06/08/23 10:30	06/10/23 09:	00
Method	Batch	Dilution	Preparation data/time	Analysis	Analyst	Location
Cravimatric Analysis by Mathad 2EAO C 2014	W/C207E444	1	date/time	date/time	NANA ⊏	M+ 1 7
Gravimetric Analysis by Method 2540 C-2011	WG2075111	1	06/12/23 18:48	06/13/23 02:36	MMF	Mt. Juliet, T
Wet Chemistry by Method 9056A	WG2083802	1	06/24/23 14:36	06/24/23 14:36	GEB	Mt. Juliet, T
Metals (ICP) by Method 6010B	WG2075642	1	06/13/23 11:47	06/29/23 01:13	ZSA	Mt. Juliet, T
Metals (ICPMS) by Method 6020	WG2075653	1	06/13/23 11:49	06/13/23 18:13	LD	Mt. Juliet, TI

MW-110D L1624861-30 GW			Collected by Will Glenn	Collected date/time 06/06/23 15:50	Received da 06/10/23 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG2075855	1	06/12/23 10:27	06/12/23 12:46	AS	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG2083802	1	06/24/23 14:49	06/24/23 14:49	GEB	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG2075642	1	06/13/23 11:47	06/29/23 01:16	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG2075653	1	06/13/23 11:49	06/13/23 18:16	LD	Mt. Juliet, TN
MW-112D L1624861-31 GW			Collected by Will Glenn	Collected date/time 06/06/23 17:30	Received da 06/10/23 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG2075855	1	06/12/23 10:27	06/12/23 12:46	AS	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG2083802	1	06/24/23 15:03	06/24/23 15:03	GEB	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG2075642	1	06/13/23 11:47	06/29/23 01:19	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG2075653	1	06/13/23 11:49	06/13/23 17:26	LD	Mt. Juliet, TN
MW-113D L1624861-32 GW			Collected by Will Glenn	Collected date/time 06/08/23 09:15	Received da 06/10/23 09:	
	D	D				
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Cravimatria Analysis by Mathad 2EAO C 2011	WG2075111	1	06/12/23 18:48	06/13/23 02:36	MMF	Mt. Juliet, TN
Gravimetric Analysis by Method 2540 C-2011 Wet Chemistry by Method 9056A	WG2075111 WG2083802	1	06/24/23 15:16	06/24/23 15:16	GEB	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG2083802 WG2083802	10	06/24/23 15:30	06/24/23 15:30	GEB	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG2005602 WG2075642	1	06/13/23 11:47	06/29/23 01:22	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG2075653	1	06/13/23 11:49	06/13/23 18:19	LD	Mt. Juliet, TN
MW-114D L1624861-33 GW			Collected by Will Glenn	Collected date/time 06/08/23 12:55	Received da 06/10/23 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG2075111	1	06/12/23 18:48	06/13/23 02:36	MMF	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG2083802	1	06/24/23 15:43	06/24/23 15:43	GEB	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG2005602 WG2075642	1	06/13/23 11:47	06/29/23 01:24	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG2075653	1	06/13/23 11:49	06/13/23 18:23	LD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-115D L1624861-34 GW			Will Glenn	06/08/23 11:40	06/10/23 09	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG2075111	1	06/12/23 18:48	06/13/23 02:36	MMF	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG2083802	1	06/24/23 16:23	06/24/23 16:23	GEB	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG2075642	1	06/13/23 11:47	06/29/23 01:27	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG2075653	1	06/13/23 11:49	06/13/23 18:26	LD	Mt. Juliet, TN
MW-118D L1624861-35 GW			Collected by Will Glenn	Collected date/time 06/06/23 14:10	Received da 06/10/23 09:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
		1	06/12/23 10:27	06/12/23 12:46	AS	Mt. Juliet, TN
Gravimetric Analysis by Method 2540 C-2011	WG2075855	•				
Gravimetric Analysis by Method 2540 C-2011 Wet Chemistry by Method 9056A	WG20/5855 WG2083802	1	06/24/23 16:37	06/24/23 16:37	GEB	Mt. Juliet, TN
, ,			06/24/23 16:37 06/13/23 11:47	06/24/23 16:37 06/29/23 01:35	GEB ZSA	Mt. Juliet, TN Mt. Juliet, TN

¹Cp

			Collected by	Collected date/time	Received da	te/time
FIELD BLANK 1 L1624861-36 GW			Will Glenn	06/07/23 09:25	06/10/23 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG2075855	1	06/12/23 10:27	06/12/23 12:46	AS	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG2083802	1	06/24/23 17:04	06/24/23 17:04	GEB	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG2075642	1	06/13/23 11:47	06/29/23 01:38	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG2075653	1	06/13/23 11:49	06/13/23 18:40	LD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
DUPLICATE 1 MW-106S L1624861-37 GW			Will Glenn	06/07/23 09:16	06/10/23 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG2075855	1	06/12/23 10:27	06/12/23 12:46	AS	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG2083802	1	06/24/23 17:17	06/24/23 17:17	GEB	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG2083802	10	06/24/23 17:30	06/24/23 17:30	GEB	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG2075642	1	06/13/23 11:47	06/29/23 01:41	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG2075653	1	06/13/23 11:49	06/13/23 18:44	LD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
DUPLICATE 3 MW-112D L1624861-38 GW			Will Glenn	06/06/23 17:31	06/10/23 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG2075855	1	06/12/23 10:27	06/12/23 12:46	AS	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG2083802	1	06/24/23 17:44	06/24/23 17:44	GEB	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG2075642	1	06/13/23 11:47	06/29/23 01:44	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG2075653	1	06/13/23 11:49	06/13/23 18:47	LD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
DUPLICATE 2 MW-110D L1624861-39 GW			Will Glenn	06/06/23 15:50	06/10/23 09	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG2075855	1	06/12/23 10:27	06/12/23 12:46	AS	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG2083802	1	06/24/23 17:57	06/24/23 17:57	GEB	Mt. Juliet, TN

WG2075642

WG2075653

1

1

06/13/23 11:47

06/13/23 11:49

Metals (ICP) by Method 6010B

Metals (ICPMS) by Method 6020

ZSA

LD

06/29/23 00:35

06/13/23 18:50

Mt. Juliet, TN

Mt. Juliet, TN

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Brittnie L Boyd Project Manager

Level II Report - Version 1: 06/29/23 15:47 Level II Report - Version 2: 08/21/23 12:09

Report Revision History

Drittine Boyd

Project Narrative

Updated sample ID

L16

Gravimetric Analysis by Method 2540 C-2011

Collected date/time: 06/05/23 16:08

	Result	Qualifier R	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l	n	ng/l		date / time	
Dissolved Solids	4020	5	0.0	1	06/12/2023 12:22	WG2075832

²Tc

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Chloride	420		10.0	10	06/23/2023 16:37	WG2083289
Fluoride	2.02		1.50	10	06/23/2023 16:37	WG2083289
Sulfate	2240		500	100	06/23/2023 16:51	WG2083289

Ss

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	ND		0.200	1	06/20/2023 23:36	WG2075641

Gl

Metals (ICPMS) by Method 6020

	Result	Qualifier RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l	mg/l		date / time	
Calcium	330	1.00	1	06/13/2023 18:41	WG2075651

Collected date/time: 06/05/23 12:00

1624861

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	291		10.0	1	06/12/2023 12:22	WG2075832

²Tc

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Chloride	19.5		1.00	1	06/23/2023 17:04	WG2083289
Fluoride	ND		0.150	1	06/23/2023 17:04	WG2083289
Sulfate	110		5.00	1	06/23/2023 17:04	<u>WG2083289</u>

Ss

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	ND		0.200	1	06/20/2023 23:38	WG2075641

GI

Metals (ICPMS) by Method 6020

-	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Calcium	16.6		1.00	1	06/13/2023 18:44	WG2075651

GBMc & Associates - Bryant, AR

Collected date/time: 06/06/23 14:14

1624861

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	1820		50.0	1	06/12/2023 12:22	WG2075832

²Tc

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Chloride	174		5.00	5	06/23/2023 17:58	WG2083289
Fluoride	0.948		0.750	5	06/23/2023 17:58	WG2083289
Sulfate	1280		50.0	10	06/23/2023 18:38	<u>WG2083289</u>

Ss

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	ND		0.200	1	06/20/2023 23:41	WG2075641

GI

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Calcium	203		1.00	1	06/13/2023 18:48	WG2075651

Collected date/time: 06/06/23 15:22

1624861

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	404		10.0	1	06/12/2023 12:22	WG2075832

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Chloride	31.5		1.00	1	06/23/2023 18:52	WG2083289
Fluoride	0.369		0.150	1	06/23/2023 18:52	WG2083289
Sulfate	108		5.00	1	06/23/2023 18:52	WG2083289

Cn

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Boron	ND		0.200	1	06/20/2023 23:44	WG2075641

GI

Metals (ICPMS) by Method 6020

	Result	Qualifier RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l	mg/l		date / time	
Calcium	56.1	1.00	1	06/13/2023 18:51	WG2075651

GBMc & Associates - Bryant, AR

Collected date/time: 06/06/23 09:20

1624861

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	498		10.0	1	06/12/2023 12:22	WG2075832

²Tc

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Chloride	40.7		1.00	1	06/23/2023 19:05	WG2083289
Fluoride	0.331		0.150	1	06/23/2023 19:05	WG2083289
Sulfate	244	<u>E</u>	5.00	1	06/23/2023 19:05	<u>WG2083289</u>

Ss

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	ND		0.200	1	06/20/2023 23:52	WG2075641

GI

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Calcium	42.6		1.00	1	06/13/2023 19:04	WG2075651

GBMc & Associates - Bryant, AR

Collected date/time: 06/05/23 14:00

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	1820		25.0	1	06/12/2023 12:22	WG2075832

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Chloride	33.2		1.00	1	06/23/2023 19:18	WG2083289
Fluoride	0.855		0.150	1	06/23/2023 19:18	WG2083289
Sulfate	1230		50.0	10	06/23/2023 19:32	WG2083289

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	0.580		0.200	1	06/20/2023 23:55	WG2075641

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Calcium	262	V	1.00	1	06/13/2023 18:28	WG2075651

Gl

Collected date/time: 06/06/23 10:27

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	440		10.0	1	06/12/2023 12:22	WG2075832

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Chloride	6.61		1.00	1	06/23/2023 19:45	WG2083289
Fluoride	0.419		0.150	1	06/23/2023 19:45	WG2083289
Sulfate	216	<u>E</u>	5.00	1	06/23/2023 19:45	WG2083289

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Boron	ND		0.200	1	06/20/2023 23:58	WG2075641

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Calcium	36.4		1.00	1	06/13/2023 19:07	WG2075651

Gl

18 of 68

Collected date/time: 06/06/23 11:31

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	329		10.0	1	06/12/2023 12:22	WG2075832

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Chloride	21.8		1.00	1	06/23/2023 19:59	WG2083289
Fluoride	0.284		0.150	1	06/23/2023 19:59	WG2083289
Sulfate	160		5.00	1	06/23/2023 19:59	<u>WG2083289</u>

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	ND		0.200	1	06/21/2023 00:01	WG2075641

Gl

Metals (ICPMS) by Method 6020

	Result	Qualifier RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l	mg/l		date / time	
Calcium	37.4	1.00	1	06/13/2023 19:10	WG2075651

GBMc & Associates - Bryant, AR

Collected date/time: 06/06/23 13:00

1624861

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	224		10.0	1	06/12/2023 12:22	WG2075832

²Tc

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Chloride	2.56	В	1.00	1	06/23/2023 20:14	WG2083289
Fluoride	0.156		0.150	1	06/23/2023 20:14	WG2083289
Sulfate	26.5		5.00	1	06/23/2023 20:14	WG2083289

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Boron	ND		0.200	1	06/21/2023 00:04	WG2075641

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Calcium	19.0		1.00	1	06/13/2023 19:14	WG2075651

Gl

Collected date/time: 06/06/23 16:47

1624861

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	844		13.3	1	06/12/2023 12:22	WG2075832

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Chloride	58.9		1.00	1	06/23/2023 20:28	WG2083289
Fluoride	0.545		0.150	1	06/23/2023 20:28	WG2083289
Sulfate	488		25.0	5	06/23/2023 20:42	WG2083289

Ss

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	0.372		0.200	1	06/21/2023 00:07	WG2075641

Gl

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Calcium	58.3		1.00	1	06/13/2023 19:17	WG2075651

GBMc & Associates - Bryant, AR

3 12:56 2

FIELD BLANK

SAMPLE RESULTS - 11

Collected date/time: 06/05/23 12:05

1624861

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	ND		10.0	1	06/12/2023 12:22	WG2075832

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Chloride	ND		1.00	1	06/23/2023 21:22	WG2083289
Fluoride	ND		0.150	1	06/23/2023 21:22	WG2083289
Sulfate	ND		5.00	1	06/23/2023 21:22	WG2083289

Cn

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Boron	ND		0.200	1	06/21/2023 00:10	WG2075641

Gl

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Calcium	ND		1.00	1	06/13/2023 19:20	WG2075651

DUPLICATE RP-2

SAMPLE RESULTS - 12

L1624861

Collected date/time: 06/05/23 12:01

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	298		10.0	1	06/12/2023 12:22	WG2075832

²Tc

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Chloride	19.1		1.00	1	06/23/2023 21:36	WG2083289
Fluoride	ND		0.150	1	06/23/2023 21:36	WG2083289
Sulfate	107		5.00	1	06/23/2023 21:36	WG2083289

Cn

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	ND		0.200	1	06/21/2023 00:13	WG2075641

Metals (ICPMS) by Method 6020

	Result	Qualifier RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l	mg/l		date / time	
Calcium	16.3	1.00	1	06/13/2023 19:23	WG2075651

Gl

Collected date/time: 06/08/23 14:11

1624861

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	208		10.0	1	06/13/2023 02:36	WG2075111

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Chloride	7.50		1.00	1	06/23/2023 21:49	WG2083289
Fluoride	ND		0.150	1	06/23/2023 21:49	WG2083289
Sulfate	49.1		5.00	1	06/23/2023 21:49	WG2083289

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	ND		0.200	1	06/21/2023 00:15	WG2075641

Gl

	Result	Qualifier RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l	mg/l		date / time	
Calcium	15.4	1.00	1	06/13/2023 19:27	WG2075651

L16

Gravimetric Analysis by Method 2540 C-2011

Collected date/time: 06/08/23 15:47

							
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		
Dissolved Solids	198		10.0	1	06/13/2023 02:36	WG2075111	

²Tc

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Chloride	7.54		1.00	1	06/23/2023 22:03	WG2083289
Fluoride	ND		0.150	1	06/23/2023 22:03	WG2083289
Sulfate	23.1		5.00	1	06/23/2023 22:03	WG2083289

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	ND		0.200	1	06/21/2023 00:18	WG2075641

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Calcium	12.5		1.00	1	06/13/2023 19:30	WG2075651

Gl

1624861

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	117		10.0	1	06/12/2023 12:22	WG2075832

²Tc

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Chloride	4.07	В	1.00	1	06/23/2023 22:16	WG2083289
Fluoride	ND		0.150	1	06/23/2023 22:16	WG2083289
Sulfate	37.0		5.00	1	06/23/2023 22:16	WG2083289

Cn

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	ND		0.200	1	06/21/2023 00:27	WG2075641

Gl

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Calcium	4.57		1.00	1	06/13/2023 10:33	WG2075651

Collected date/time: 06/07/23 14:50

1624861

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	233		10.0	1	06/12/2023 12:22	WG2075832

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Chloride	4.58	В	1.00	1	06/23/2023 22:31	WG2083289
Fluoride	ND		0.150	1	06/23/2023 22:31	WG2083289
Sulfate	73.9		5.00	1	06/23/2023 22:31	WG2083289

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	0.782		0.200	1	06/21/2023 00:30	WG2075641

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Calcium	16.3		1.00	1	06/13/2023 19:44	WG2075651

Gl

Collected date/time: 06/07/23 15:52

1624861

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	173		10.0	1	06/12/2023 12:22	WG2075832

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Chloride	4.07	В	1.00	1	06/23/2023 22:44	WG2083289
Fluoride	ND		0.150	1	06/23/2023 22:44	WG2083289
Sulfate	21.5		5.00	1	06/23/2023 22:44	WG2083289

Ss

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	ND		0.200	1	06/21/2023 00:32	WG2075641

Gl

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Calcium	13.7		1.00	1	06/13/2023 19:47	WG2075651

L1624861

Collected date/time: 06/07/23 09:15

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	1200		20.0	1	06/12/2023 12:22	WG2075832

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Chloride	13.3		1.00	1	06/23/2023 22:57	WG2083289
Fluoride	0.728		0.150	1	06/23/2023 22:57	WG2083289
Sulfate	808		25.0	5	06/23/2023 23:11	WG2083289

Cn

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Boron	7.40		0.200	1	06/21/2023 00:35	WG2075641

Gl

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Calcium	46.8		1.00	1	06/13/2023 19:50	WG2075651

13:42 L1

Collected date/time: 06/07/23 13:42

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>	
Analyte	mg/l		mg/l		date / time		
Dissolved Solids	441		10.0	1	06/12/2023 12:22	WG2075832	

²Tc

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Chloride	5.78		1.00	1	06/24/2023 00:18	WG2083289
Fluoride	0.228		0.150	1	06/24/2023 00:18	WG2083289
Sulfate	233	<u>E</u>	5.00	1	06/24/2023 00:18	WG2083289

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	2.24		0.200	1	06/21/2023 00:38	WG2075641

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Calcium	5.85		1.00	1	06/13/2023 19:53	WG2075651

Gl

Collected date/time: 06/07/23 10:44

1624861

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	1270		20.0	1	06/12/2023 12:22	WG2075832

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Chloride	11.5		1.00	1	06/23/2023 23:24	WG2083289
Fluoride	0.850		0.150	1	06/23/2023 23:24	WG2083289
Sulfate	854		25.0	5	06/24/2023 00:04	WG2083289

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	5.98		0.200	1	06/20/2023 23:24	WG2075641

Gl

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Calcium	118		1.00	1	06/13/2023 19:57	WG2075651

L162486

Collected date/time: 06/08/23 18:43

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	349		10.0	1	06/13/2023 02:36	WG2075111

²Tc

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Chloride	5.99		1.00	1	06/24/2023 11:41	WG2083802
Fluoride	ND	<u>P1</u>	0.150	1	06/24/2023 11:41	WG2083802
Sulfate	74.0		5.00	1	06/24/2023 11:41	<u>WG2083802</u>

Ss

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	ND		0.200	1	06/29/2023 00:46	WG2075642

Gl

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Calcium	48.0		1.00	1	06/13/2023 17:30	WG2075653

Collected date/time: 06/08/23 17:36

1624861

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	487		10.0	1	06/13/2023 02:36	WG2075111

²Tc

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Chloride	8.28		1.00	1	06/24/2023 12:35	WG2083802
Fluoride	ND		0.150	1	06/24/2023 12:35	WG2083802
Sulfate	29.1		5.00	1	06/24/2023 12:35	WG2083802

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	0.277		0.200	1	06/29/2023 00:49	WG2075642

Gl

Metals (ICPMS) by Method 6020

	Result	Qualifier RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l	mg/l		date / time	
Calcium	66.9	1.00	1	06/13/2023 17:42	WG2075653

Collected date/time: 06/07/23 12:11

1624861

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	422		10.0	1	06/12/2023 12:22	WG2075832

²Tc

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Chloride	7.29		1.00	1	06/24/2023 12:48	WG2083802
Fluoride	0.166		0.150	1	06/24/2023 12:48	WG2083802
Sulfate	71.6		5.00	1	06/24/2023 12:48	WG2083802

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	0.286		0.200	1	06/29/2023 00:51	WG2075642

Gl

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Calcium	5/1.3		1.00	1	06/13/2023 17:45	WC2075652

Collected date/time: 06/07/23 16:05

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	321		10.0	1	06/12/2023 12:22	WG2075832

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Chloride	9.30		1.00	1	06/24/2023 13:02	WG2083802
Fluoride	ND		0.150	1	06/24/2023 13:02	WG2083802
Sulfate	20.1		5.00	1	06/24/2023 13:02	WG2083802

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	0.245		0.200	1	06/29/2023 00:54	WG2075642

Gl

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Calcium	55.4		1.00	1	06/13/2023 17:49	WG2075653

Collected date/time: 06/06/23 12:30

1624861

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	331		10.0	1	06/12/2023 12:46	WG2075855

²Tc

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Chloride	8.28		1.00	1	06/24/2023 13:42	WG2083802
Fluoride	ND		0.150	1	06/24/2023 13:42	WG2083802
Sulfate	26.3		5.00	1	06/24/2023 13:42	<u>WG2083802</u>

Ss

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	0.284		0.200	1	06/29/2023 01:02	WG2075642

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Calcium	5/1/1		1.00	1	06/13/2023 18:00	WG2075653

Collected date/time: 06/07/23 10:20

1624861

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	210		10.0	1	06/12/2023 12:46	WG2075855

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Chloride	5.01		1.00	1	06/24/2023 13:56	WG2083802
Fluoride	ND		0.150	1	06/24/2023 13:56	WG2083802
Sulfate	10.3		5.00	1	06/24/2023 13:56	WG2083802

Ss

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Boron	0.277		0.200	1	06/29/2023 01:05	WG2075642

Gl

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Calcium	/2 Q		1.00	1	06/13/2023 19:03	WC2075653

L10

Consideration Assaltante Inc. Matter at

Collected date/time: 06/06/23 10:20

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	470		10.0	1	06/12/2023 12:46	WG2075855

²Tc

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Chloride	20.0		1.00	1	06/24/2023 14:09	WG2083802
Fluoride	ND		0.150	1	06/24/2023 14:09	WG2083802
Sulfate	137		5.00	1	06/24/2023 14:09	WG2083802

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	0.329		0.200	1	06/29/2023 01:08	WG2075642

Gl

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Calcium	82.8		1.00	1	06/13/2023 18:06	WC2075652

Collected date/time: 06/07/23 13:45

1624861

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	469		10.0	1	06/12/2023 12:46	WG2075855

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Chloride	12.7		1.00	1	06/24/2023 14:22	WG2083802
Fluoride	ND		0.150	1	06/24/2023 14:22	WG2083802
Sulfate	43.2		5.00	1	06/24/2023 14:22	WG2083802

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	0.352		0.200	1	06/29/2023 01:10	WG2075642

Gl

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Calcium	68.0		1.00	1	06/13/2023 18:10	WG2075653

Collected date/time: 06/08/23 10:30

1624861

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	372		10.0	1	06/13/2023 02:36	WG2075111

²Tc

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Chloride	7.47		1.00	1	06/24/2023 14:36	WG2083802
Fluoride	ND		0.150	1	06/24/2023 14:36	WG2083802
Sulfate	49.9		5.00	1	06/24/2023 14:36	WG2083802

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	0.321		0.200	1	06/29/2023 01:13	WG2075642

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Calcium	Δ7 Δ		100	1	06/13/2023 18:13	WG2075653

Collected date/time: 06/06/23 15:50

1624861

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	346		10.0	1	06/12/2023 12:46	WG2075855

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Chloride	6.63		1.00	1	06/24/2023 14:49	WG2083802
Fluoride	ND		0.150	1	06/24/2023 14:49	WG2083802
Sulfate	40.3		5.00	1	06/24/2023 14:49	<u>WG2083802</u>

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	0.322		0.200	1	06/29/2023 01:16	WG2075642

Gl

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Calcium	44.7		1.00	1	06/13/2023 19:16	WC2075652

L1624861

Collected date/time: 06/06/23 17:30

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	308		10.0	1	06/12/2023 12:46	WG2075855

²Tc

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Chloride	6.05		1.00	1	06/24/2023 15:03	WG2083802
Fluoride	ND		0.150	1	06/24/2023 15:03	WG2083802
Sulfate	ND		5.00	1	06/24/2023 15:03	<u>WG2083802</u>

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Boron	0.287		0.200	1	06/29/2023 01:19	WG2075642

Gl

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Calcium	30.5		1.00	1	06/13/2023 17:26	WG2075653

Collected date/time: 06/08/23 09:15

1624861

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	1160		20.0	1	06/13/2023 02:36	WG2075111

²Tc

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Chloride	14.1		1.00	1	06/24/2023 15:16	WG2083802
Fluoride	ND		0.150	1	06/24/2023 15:16	WG2083802
Sulfate	653		50.0	10	06/24/2023 15:30	WG2083802

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	0.503		0.200	1	06/29/2023 01:22	WG2075642

Gl

	Result	Qualifier RDL	Dilution	Analysis	Batch
Analyte	mg/l	mg/l		date / time	
Calcium	184	1.00	1	06/13/2023 18:19	WG2075653

Collected date/time: 06/08/23 12:55

1624861

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	326		10.0	1	06/13/2023 02:36	WG2075111

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Chloride	7.42		1.00	1	06/24/2023 15:43	WG2083802
Fluoride	ND		0.150	1	06/24/2023 15:43	WG2083802
Sulfate	29.6		5.00	1	06/24/2023 15:43	WG2083802

Ss

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	0.275		0.200	1	06/29/2023 01:24	WG2075642

Gl

	Result	Qualifier RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l	mg/l		date / time	
Calcium	51.7	1.00	1	06/13/2023 18:23	WG2075653

11624

Gravimetric Analysis by Method 2540 C-2011

Collected date/time: 06/08/23 11:40

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	342		10.0	1	06/13/2023 02:36	WG2075111

²Tc

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Chloride	4.63	В	1.00	1	06/24/2023 16:23	WG2083802
Fluoride	ND		0.150	1	06/24/2023 16:23	WG2083802
Sulfate	ND		5.00	1	06/24/2023 16:23	WG2083802

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	0.346		0.200	1	06/29/2023 01:27	WG2075642

Gl

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Calcium	13 E		1.00	1	06/13/2023 18:26	WC2075653

GBMc & Associates - Bryant, AR

08/28/23 12:56 45 of 68

Collected date/time: 06/06/23 14:10

1624861

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	566		10.0	1	06/12/2023 12:46	WG2075855

²Tc

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Chloride	8.27		1.00	1	06/24/2023 16:37	WG2083802
Fluoride	ND		0.150	1	06/24/2023 16:37	WG2083802
Sulfate	162		5.00	1	06/24/2023 16:37	<u>WG2083802</u>

Ss

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	0.276		0.200	1	06/29/2023 01:35	WG2075642

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Calcium	90.6		1.00	1	06/13/2023 18:20	WC2075652

Gl

FIELD BLANK 1

SAMPLE RESULTS - 36

Collected date/time: 06/07/23 09:25

1624861

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	ND		10.0	1	06/12/2023 12:46	WG2075855

²Tc

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Chloride	ND		1.00	1	06/24/2023 17:04	WG2083802
Fluoride	ND		0.150	1	06/24/2023 17:04	WG2083802
Sulfate	ND		5.00	1	06/24/2023 17:04	<u>WG2083802</u>

Ss

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	ND		0.200	1	06/29/2023 01:38	WG2075642

GI

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Calcium	ND		1.00	1	06/13/2023 18:40	WC2075653

DUPLICATE 1 MW-106S Collected date/time: 06/07/23 09:16

SAMPLE RESULTS - 37

1624861

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	1180		20.0	1	06/12/2023 12:46	WG2075855

²Tc

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Chloride	13.0		1.00	1	06/24/2023 17:17	WG2083802
Fluoride	0.801		0.150	1	06/24/2023 17:17	WG2083802
Sulfate	788		50.0	10	06/24/2023 17:30	<u>WG2083802</u>

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	7.69		0.200	1	06/29/2023 01:41	WG2075642

Gl

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Calcium	45.0		1.00	1	06/13/2023 18:44	WG2075653

DUPLICATE 3 MW-112D Collected date/time: 06/06/23 17:31

SAMPLE RESULTS - 38

1624861

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	258		10.0	1	06/12/2023 12:46	WG2075855

²Tc

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Chloride	6.23		1.00	1	06/24/2023 17:44	WG2083802
Fluoride	ND		0.150	1	06/24/2023 17:44	WG2083802
Sulfate	ND		5.00	1	06/24/2023 17:44	<u>WG2083802</u>

Cn

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	0.311		0.200	1	06/29/2023 01:44	WG2075642

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Calcium	30.0		1.00	1	06/13/2023 18:47	WG2075653

Gl

DUPLICATE 2 MW-110D Collected date/time: 06/06/23 15:50

SAMPLE RESULTS - 39

1624861

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	346		10.0	1	06/12/2023 12:46	WG2075855

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Chloride	6.68		1.00	1	06/24/2023 17:57	WG2083802
Fluoride	ND		0.150	1	06/24/2023 17:57	WG2083802
Sulfate	39.0		5.00	1	06/24/2023 17:57	WG2083802

Cn

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	0.321		0.200	1	06/29/2023 00:35	WG2075642

Gl

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		
Calcium	45.6		1.00	1	06/13/2023 18:50	WG2075653	

QUALITY CONTROL SUMMARY

Gravimetric Analysis by Method 2540 C-2011

L1624861-13,14,21,22,29,32,33,34

Method Blank (MB)

		MP Doc	
(MB) R393/323-1	06/13/23	02:36	

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Dissolved Solids	U		10.0	10.0

Ss

L1624192-10 Original Sample (OS) • Duplicate (DUP)

(OS) L1624192-10 06/13/23 02:36 • (DUP) R3937323-3 06/13/23 02:36

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/I	mg/l		%		%
Dissolved Solids	1400	1450	1	4.07		5

⁶Qc

L1624861-32 Original Sample (OS) • Duplicate (DUP)

(OS) L1624861-32 06/13/23 02:36 • (DUP) R3937323-4 06/13/23 02:36

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Dissolved Solids	1160	1190	1	2.72		5

PAGE:

51 of 68

Laboratory Control Sample (LCS)

(LCS) R3937323-2 06/13/23 02:36

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Dissolved Solids	8800	8570	97.4	77.3-123	

QUALITY CONTROL SUMMARY

Gravimetric Analysis by Method 2540 C-2011

L1624861-01,02,03,04,05,06,07,08,09,10,11,12,15,16,17,18,19,20,23,24

Method Blank (MB)

(MB) R3936421-1 06/12/23 12:22

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Dissolved Solids	U	<u>J</u>	10.0	10.0

³Ss

L1624861-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1624861-02 06/12/23 12:22 • (DUP) R3936421-5 06/12/23 12:22

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Dissolved Solids	291	296	1	170		5

⁶Qc

L1624861-09 Original Sample (OS) • Duplicate (DUP)

(OS) L1624861-09 06/12/23 12:22 • (DUP) R3936421-6 06/12/23 12:22

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Dissolved Solids	224	220	1	1.80		5

Laboratory Control Sample (LCS)

(LCS) R3936421-2 06/12/23 12:22

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Dissolved Solids	8800	8320	94.5	77.3-123	

QUALITY CONTROL SUMMARY

Gravimetric Analysis by Method 2540 C-2011

L1624861-25,26,27,28,30,31,35,36,37,38,39

Method Blank (MB)

		MD D.
(MB) R3936434-1	06/12/23	12:46

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Dissolved Solids	U		10.0	10.0

³Ss

L1623688-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1623688-02 06/12/23 12:46 • (DUP) R3936434-3 06/12/23 12:46

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Dissolved Solids	134	138	1	2.94		5

⁶Qc

L1623901-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1623901-01 06/12/23 12:46 • (DUP) R3936434-4 06/12/23 12:46

(00) 2.02000. 0. 00/.2/.	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Dissolved Solids	261	278	1	6.31	<u>J3</u>	5

Laboratory Control Sample (LCS)

(LCS) R3936434-2 06/12/23 12:46

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Dissolved Solids	8800	7780	88.4	77 3-123	

08/28/23 12:56

QUALITY CONTROL SUMMARY

L1624861-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17,18,19,20

Method Blank (MB)

(MB) R3941971-1 06/23/23 10:40

Wet Chemistry by Method 9056A

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Chloride	0.465	<u>J</u>	0.379	1.00
Fluoride	U		0.0640	0.150
Sulfate	0.648	J	0.594	5.00

⁴Cn

(OS) L1624861-02 06/23/23 17:04 • (DUP) R3941971-3 06/23/23 17:18

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Chloride	19.5	19.7	1	1.14		15
Fluoride	ND	ND	1	8.32		15
Sulfate	110	110	1	0.667		15

L1624861-19 Original Sample (OS) • Duplicate (DUP)

(OS) L1624861-19 06/24/23 00:18 • (DUP) R3941971-6 06/24/23 00:31

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Chloride	5.78	5.79	1	0.0363		15
Fluoride	0.228	0.224	1	1.77		15
Sulfate	233	234	1	0.534	<u>E</u>	15

9

⁹Sc

PAGE:

54 of 68

Laboratory Control Sample (LCS)

(LCS) R3941971-2 06/23/23 10:53

(LC3) K3941971-2 00/23	3/23 10.33				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Chloride	40.0	38.2	95.5	80.0-120	
Fluoride	8.00	7.81	97.6	80.0-120	
Sulfate	40.0	37 5	93.6	80 0-120	

QUALITY CONTROL SUMMARY

Wet Chemistry by Method 9056A

L1624861-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17,18,19,20

L1624861-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1624861-02 06/23/23 17:04 • (MS) R3941971-4 06/23/23 17:31 • (MSD) R3941971-5 06/23/23 17:44

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Chloride	50.0	19.5	68.9	68.6	98.8	98.2	1	80.0-120			0.437	15
Fluoride	5.00	ND	4.81	4.80	94.2	94.1	1	80.0-120			0.135	15
Sulfate	50.0	110	160	159	99.2	97.0	1	80.0-120			0.681	15

L1624861-19 Original Sample (OS) • Matrix Spike (MS)

(OS) L1624861-19 06/24/23 00:18 • (MS) R3941971-7 06/24/23 00:45

(/	/ - /						
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	mg/l	mg/l	mg/l	%		%	
Chloride	50.0	5.78	55.9	100	1	80.0-120	
Fluoride	5.00	0.228	5.13	98.0	1	80.0-120	
Sulfate	50.0	233	274	83.0	1	80.0-120	Е

QUALITY CONTROL SUMMARY

L1624861-21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39

Method Blank (MB)

Wet Chemistry by Method 9056A

(MB) R3941976-1 06/24/23 10:35

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Chloride	0.466	<u>J</u>	0.379	1.00
Fluoride	U		0.0640	0.150
Sulfate	0.654	J	0.594	5.00

⁴Cn

(OS) L1624861-21 06/24/23 11:41 • (DUP) R3941976-3 06/24/23 11:55

(,	(/ -					
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Chloride	5.99	6.01	1	0.265		15
Fluoride	ND	ND	1	26.6	<u>P1</u>	15
Sulfate	74.0	75.5	1	1.97		15

⁸Al

L1624868-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1624868-01 06/24/23 18:11 • (DUP) R3941976-6 06/24/23 18:24

(11)	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Chloride	11.3	11.0	1	2.80		15
Sulfate	6.33	6.05	1	4.55		15

⁹Sc

Laboratory Control Sample (LCS)

(LCS) R3941976-2 06/24/23 10:49

(LCS) R3941976-2 U6/24	4/23 10:49				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Chloride	40.0	38.9	97.4	80.0-120	
Fluoride	8.00	7.99	99.9	80.0-120	
Sulfate	40.0	38.3	95.7	80.0-120	

L1624861-21 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1624861-21 06/24/23 11:41 • (MS) R3941976-4 06/24/23 12:08 • (MSD) R3941976-5 06/24/23 12:22

(OS) £1024001-21 00/24/25 11.41 • (NIS) RS341370-4 00/24/25 12.00 • (NISD) RS341370-5 00/24/25 12.22												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Chloride	50.0	5.99	55.1	55.7	98.3	99.4	1	80.0-120			1.04	15
Fluoride	5.00	ND	4.79	4.93	93.8	96.6	1	80.0-120			2.87	15

QUALITY CONTROL SUMMARY

Wet Chemistry by Method 9056A

L1624861-21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39

L1624861-21 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1624861-21 06/24/23 11:41 • (MS) R3941976-4 06/24/23 12:08 • (MSD) R3941976-5 06/24/23 12:22

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Sulfate	50.0	74.0	123	125	98.4	102	1	80.0-120			1.62	15

[']Cp

L1624868-01 Original Sample (OS) • Matrix Spike (MS)

(OS) L1624868-01 06/24/23 18:11 • (MS) R3941976-7 06/24/23 19:05

	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits
Analyte	mg/l	mg/l	mg/l	%		%
Chloride	50.0	11.3	61.3	100	1	80.0-120
Sulfate	50.0	6.33	56.7	101	1	80.0-120

QUALITY CONTROL SUMMARY

L1624861-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17,18,19,20

Method Blank (MB)

(MB) R3939297-1 06/20/23 23:19

Metals (ICP) by Method 6010B

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Boron	U		0.0200	0.200

[†]Cn

ı	105	R3939297-2	06/20/23 23:2	1
А		113333237-2	00/20/23 23.2	

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Boron	1.00	0.998	99.8	80.0-120	

(OS) L1624861-20 06/20/23 23:24 • (MS) R3939297-4 06/20/23 23:30 • (MSD) R3939297-5 06/20/23 23:32

,	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Boron	100	5 98	6.89	6.89	90.3	90.8	1	75 0-125			0.0711	20

QUALITY CONTROL SUMMARY

L1624861-21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39

Metals (ICP) by Method 6010B Method Blank (MB)

(MB) R3942700-1 06/29/23 00:30

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Boron	U		0.0200	0.200

(LCS) R3942700-2 06/29/23 00:32

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Boron	1.00	0.987	98.7	80.0-120	

⁶Qc

(OS) L1624861-39 06/29/23 00:35 • (MS) R3942700-4 06/29/23 00:41 • (MSD) R3942700-5 06/29/23 00:43

,	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%	
Boron	100	0.321	133	1.33	101	101	1	75 0-125			0.104	20	

QUALITY CONTROL SUMMARY

L1624861-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17,18,19,20

Method Blank (MB)

Metals (ICPMS) by Method 6020

(MB) R3936335-1 06/13/23 18:22

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Calcium	U		0.0936	1.00

(LCS) R3936335-2 06/13/23 18:25

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Calcium	5.00	4 87	97.3	80 O-120	

(OS) L1624861-06 06/13/23 18:28 • (MS) R3936335-4 06/13/23 18:35 • (MSD) R3936335-5 06/13/23 18:38

(,	,	Original Result		MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%	Dilution	%	WS Qualifier	MSD Qualifier	%	%
Calcium	5.00	262	267	265	89.4	57.1	1	75.0-125		V	0.607	20

QUALITY CONTROL SUMMARY

L1624861-21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39

Method Blank (MB)

Metals (ICPMS) by Method 6020

(MB) R3936323-1 06/13/23 17:19

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Calcium	U		0.0936	1.00

Laboratory Control Sample (LCS)

(LCS) R3936323-2 06/13/23 17:22

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Calcium	5.00	4.65	03 U	80 0-120	

(OS) L1624861-31 06/13/23 17:26 • (MS) R3936323-4 06/13/23 17:32 • (MSD) R3936323-5 06/13/23 17:35

,	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%	
Calcium	5.00	39.5	44 2	44.3	93.5	96.7	1	75 0-125			0.358	20	

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appreviations and	d Definitions
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Description

	•
В	The same analyte is found in the associated blank.
Е	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.
P1	RPD value not applicable for sample concentrations less than 5 times the reporting limit.
V	The sample concentration is too high to evaluate accurate spike recoveries.

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LA000356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

Company Name/Address:			Billing Information:					Analysis / Container / Preservative Chain of Custody Pag										
GBMc & Associates -	Bryan	t, AR		Account 219 Bro	wn Ln.			Pres Chk	62								_ 6	ace.
Little Rock, AR 72022				Bryant,	AR 7202	2						PH	10BDH43	21 TRC	21 14141		PEOP	LE ADVANCING SCIENCE
Report to: Will Glenn				Email To: Will.Glenn@AllianceTG.com;Jonathan.Brown@				1			CR6-20221V					12065 Lebanon Rd A	OULIET, TN fount Juliet, TN 37122 via this chain of custody	
Project Description: Entergy - White Bluff			City/State Collected:		Please Cir PT MT C						_						constitutes acknowle Pace Terms and Con-	dgment and acceptance of the
Phone: 501-847-7077		15-21-0			Lab Project # GBMCBAR-ENTERGYWB			3			oPres						SDG# L1	024861
Collected by (print): Will Glenn	100.00	Facility I			P.O. #				HN03	HN03	DPE-N	sə				(-3 (a	Acctnum: GE	D207
Collected by (signature):		Rush? (Lab MUST Be Notified) Same Day Five Day Next Day 5 Day (Rad Only)			Quote #				BICP 250mlHDPE-HN03	250mIHDPE-HNO3	SO4 125mlHDPE-NoPres	1L-HDPE NoPres					Template:T2	31252
Immediately Packed on Ice N Y	=	Two Day 10 Day (Rad Only) Three Day			Dat	e Result	s Needed	No. of	250ml	250mli	504 1	-T-HDP			124.0		PM: 829 Bri	Signie L Boyd
Sample ID	Com	np/Grab	Matrix *	Depth	pth Date Time			Cntrs	SICP	CAG	CI, F,	TDS 1	135				Shipped Via: Remarks	Sample # (lab only)
RP-1	61	ab	GW		le-5	5-23	1608	3	×	×	×	×					3.71	cu)
RP-2	1		GW		1	_	1206	1	1	1	1	1					3.81	-02
RP-3			GW		6-6	-23	1414	T	-	\Box			1300		TELES TO		3.53	-03
RP-4			GW		1		1522	T		\top	1915					16	5.82	-04
RP-5			GW		1		920	T	60	\Box						li vin	3.64	-05
RP-6			GW		6-5-	-23	1400	$\dagger \dagger$	4	\top	1	\vdash					4.51	-04
RP-7			GW		6-6		1027	†		\top		\vdash					3.64	-67
RP-8			GW		100	-	1/3/	\dagger		+		1					5.5	-08
RP-9			GW				1300	+		+	1	\vdash		-			6.16	-09
RP-10			GW		1		1647		1	1	1	1			4 1		3.69	-10
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Remarks	•					11011								r	COC Sea COC Sig Bottles	Sample Receipt C il Present/Intact gned/Accurate: s arrive intact: bottles used:	horklist
DW - Drinking Water OT - Other	Samples UPS		rrned via: Tracking #													VOA Zei	ent volume sent If Applica To Headspace:	oleN
Relinquished by : (Signature)			ate:	Time		Receiv	red by: (Signat	ure)				Trip Blar	nk Recei		HCL / MeoH		/ation Correct/Cl reen <0.5 mR/hr:	lecked: Y _N
Will de		_	6-9-23	- 11.	00	Deserte	- d b /c:				-				TBR	lif manage	unting required but	rain: Dato/Time
Relinquished by : (Signature)		Da	ate:	Time	:	Keceiv	red by: (Signat	ure)				Temp:	°	C Bott	les Received:	II preser	vation required by Lo	igni. Date/ filile
Relinquished by : (Signature)	Date: Time:				Received for Jab by: (Signature)					a	Pate:/10/23 Time: 900 Hold:						NCF OF	

				Billing Information:						Analysis	Container	/ Preservative	Chain of Custody	Page of	
GBMc & Associates -	Bryant, A	AR	219 Bro			Pres Chk	67							_ B	ace.
Little Rock, AR 72022			Bryant,	AR 72022										PEOPLE	ADVANCING SCIENCE
Report to: Will Glenn			Email To: Will.Glenr	Email To: Will.Glenn@AllianceTG.com;Jonathan.Brown@										12065 Lebanon Rd Mo Submitting a sample vi	
Project Description: Entergy - White Bluff	Casa	City/State Collected:		Please Circle PT MT CT I										Pace Terms and Condit	gment and acceptance of the ions found at: om/hubfs/pas-standard-
Phone: 501-847-7077	1145-2			Lab Project # GBMCBAR-ENTERGYWB					oPres					SDG# LI	624861
Collected by (print): Will Glenn	Site/Faci			P.O. #			INO3	NO3	PE-N	es				Table #	ACDAD
Collected by (signature): Will Sl Immediately Packed on Ice N Y	Sa Ne Tw	Rush? (Lab MUST Be Notified) Same DayFive DayNext Day5 Day (Rad Only)Two Day10 Day (Rad Only)Three Day			ts Needed	No.	250mIHDPE-HNO3	250mIHDPE-HNO3	SO4 125mlHDPE-NoPres	1L-HDPE NoPres				Template: T23 Prelogin: P10 PM: 829 - Britt PB:	1252 03296 nie L Boyd
Sample ID	Comp/G		Depth	Date	Time	of Cntrs	BICP 25	CAG 25	CI, F, SC	TDS 11-					edEX Ground Sample # (lab only)
FIELD BLANK	Grat	o GW		6-5-23	1205	3	X	0	×						-11
DUPLICATE PP-2	,	GW		1	1201	1	1	_	-	>			100		-12.
MW-101S		GW		6-8-23		+		\vdash		H	578			4.67	-13
MW-102S		GW		6-8-23	1547	11								4.28	-14
MW-103S		GW		6-7-23	1144	11					120			4.56	-15
MW-104S		GW		1	1450	11			WE		15/6	N. F.		5.0	-16
MW-105S		GW			1552					1	461	0.00		5.71	-17
MW-106S		GW			915			\top					V H	4.02	-18
MW-110S		GW			1342	\top						17/3		4.16	-19
MW-111S		GW			1044	1	L	1	1	1				3.98	-20
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Remarks:									pH .		emp	COC Sea COC Sig Bottles	Sample Receipt Ch il Present/Intact: ned/Accurate: arrive intact: bottles used:	Nb A N
DW - Drinking Water OT - Other	Samples retu	rned via: edExCourier		Track	ing#								Suffici VOA Zer	ent volume sent: If Applicab; To Headspace:	le Y N
Relinquished by : (Signature)	quished by: (Signature) Date: 1/00					ture)				Trip Blan		: Yes No HCL / MeoH TBR	RAD Scr	vation Correct/Che reen <0.5 mR/hr:	_x _n
Relinquished by : (Signature)		Date:	Time	Recei	ved by: (Signa	ture)				Temp:	°C	Bottles Received:	If presen	vation required by Log	gin: Date/Time
Relinquished by : (Signature)	Date: Time: Regeived f				ved for lab by:	: (Signat	rure)	-	9	- Pate:/0/23 Time: 900					Condition NCF / NCF

			Billing Info	Billing Information:					Analysis / Container / Preservative						Chain of Custod	Chain of Custody Page of	
GBMc & Associates -	Bryant,	AR	219 Bro			Pres Chk	63								_ B	ace.	
Little Rock, AR 72022			Bryant,	AR 72022											PEOPLE	E ADVANCING SCIENCE	
Report to: Will Glenn		+	Email To: Will.Glen	n@AllianceTo	G.com;Jonathan.Br	rown@			-					1	12065 Lebanon Rd Mo		
Project Description: Entergy - White Bluff		City/State Collected:			Please C										constitutes acknowled Pace Terms and Condit	ia this chain of custody gment and acceptance of the tions found at: com/hubfs/pas-standard-	
Phone: 501-847-7077	Client Project # 1145-21-080			GBMCBA	В			Pres			17	- 1		SDG# LIC	024861		
Collected by (print): Will Gkun	Site/Facility ID # WHITE BLUFF			P.O. #	P.O. #				PE-No	es					Table #	MCDAD	
Collected by (signature):	Rush? (Lab MUST Be Notified) Same Day Five Day			Quote #			BICP 250mIHDPE-HNO3	250mlHDPE-HNO3	SO4 125mlHDPE-NoPres	1L-HDPE NoPres					Template: T23 Prelogin: P10	1252	
Immediately Packed on Ice N Y	1	Next Day 5 Day (Rad Only) Two Day 10 Day (Rad Only) Three Day			Results Needed	No. of	250mll	50mlk	504 12	г-нрр	700				PM: 829 - Britt	tnie L Boyd	
Sample ID	Comp/	Comp/Grab Matrix * Depth			Time	Cntrs	SICP.	CAG 2	Cl, F,	TDS 1	33. 1				Shipped Via: For Remarks	Sample # (lab only)	
MW-101D	Gra	b GW		6-8-8	1843	3	×	Z	×	1		0			1.55	-21	
MW-102D	1	GW		1	1736	_	1	1	-	1					3.68	-22	
MW-103D		GW		6-7-8		11		\vdash							5.13	-23	
MW-104D		GW		1	1605	11		\vdash							6/9	-24	
MW-105D		GW		6-6	1	11	1	\vdash				7			5.11	-25	
MW-106D		GW	7	6-7	67	+		+				100		11.55	6.75	-26	
MW-107D		GW		6-6-		+	28.0	\vdash				100			1.75	-27	
MW-108D		GW		6-7-8		-		\vdash							5.01	-28	
MW-109D		GW		6-8-2	7.2	11		\vdash		1	9-56-5	- 6			3.84	-29	
MW-110D		- GW		6-6-		1	8	1	上	上	1	100	1,577		6.92	-30	
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay	Remarks:											Temp		COC Seal	ample Receipt Ch Present/Intact hed/Accurate: arrive intact:	necklist : NP Y N	
WW - WasteWater DW - Drinking Water OT - Other		nples returned via: UPS FedEx Courier Tracking #							L. Di	riow		Other_	210	Sufficient VOA Zero	bottles used: ent volume sent: If Applicab o Headspace:	le Y N	
Relinquished by: (Signature) Date: Time: 6-9-23 1/06					Received by: (Signa	ture)				Trip Blan	k Receive	The second second second	7 МеоН	Preserve RAD Scre	ation Correct/Cheen <0.5 mR/hr:	ecked:	
Relinquished by : (Signature)	1100				Received by: (Signa	ture)				Temp:	°C	Bottles F		If preserv	ation required by Lo	gin: Date/Time	
Relinquished by : (Signature)	Date: Time: Received for lab by:				: (Signat	de)	-	9	Date://	1/22	Time:	ann	Hold:		Condition:		

Company Name/Address:			Billing Info	Billing Information:				Analysis / Container / Preservative Chain of Custody Page									
GBMc & Associates	Bryant,	AR		s Payable		Pres Chk	43			Analysis	Contai	INPT / PTPSP	rvative		Chain of Custo	Pageof_	
219 Brown Lane Little Rock, AR 72022			Bryant,	AR 72022					2						PEO	ACE PLE ADVANCING SCIENCE	
Report to: Will Glenn			Email To: Will.Glenn		com;Jonathan.Br	own@									12065 Lebanon Rd	JULIET, TN Mount Juliet, TN 37122	
Project Description: Entergy - White Bluff		City/State Collected:		Please Circle: PT MT CT E											constitutes acknowledge Pace Terms and Con	e via this chain of custody ledgment and acceptance of the iditions found at: s.com/hubfs/pas-standard-	
Phone: 501-847-7077	1145-2			Lab Project # GBMCBAR-ENTERGYWB					Pres				-3		2.00	1624861	
Collected by (print): Will Gkm		ility ID #		P.O. #	P.O. #			NO3	PE-NC	Sa	8				Table #	ole#	
Collected by (signature):	Sa	ch? (Lab MUST Brane Day Five	Day	Quote #	esults Needed		BICP 250mIHDPE-HNO3	AG 250m/HDPE-HNO3	SO4 125mlHDPE-NoPres	1L-HDPE NoPres					Template:T2	ectnum: GBMCBAR emplate:T231252 elogin: P1003296	
Immediately Packed on Ice N Y	T	wo Day10 0 hree Day	Day (Rad Only)			No. of	250m			11-HD					PM: 829 - Bri	53	
Sample ID	Comp/0	Grab Matrix *	Depth	Date	Time	Cntrs	SICP	CAG	Cl, F,	TDS				4-1	Shipped Via: Remarks	FedEX Ground Sample # (lab only)	
MW-111D	Grad	o GW	12-			T		0	0	-				1	1-1		
MW-112D	1	GW	100	6-6-2	3 1730	3	X	×	7								
MW-113D		GW		6-82		-	1			7			-	1	5.65	-31	
MW-114D		GW		1	1255	H		+		H	LE	100			6.4	732	
MW-115D		GW			1140	+		+		Н		107			7.11	-33	
MW-118D		GW		6-6-2		+		+		Н	(2.20)			100	7.26	-34	
FIELD BLANK 1		GW		6-7-2	_	+		+		Н			-		5.4	-35	
DUPLICATE 1 MW-1065		GW	1	6-1-E	9/6	+		+		H						-360	
0		GW		6-6-23		+		+		Н				Marie S		-37	
Duplicate 3 MW-112D DUPLICATE 2 MW-110D		- GW		L	1550	1		1	1				7/			-38	
Matrix: SS - Soil AIR - Air F - Filter SW - Groundwater B - Bioassay WW - WasteWater	Remarks:				1700					pH _		Temp		COC Sea COC Sig Bottles	Sample Receipt C 1 Present/Intact ned/Accurate: arrive intact: bottles used:	hecklist	
DW - Drinking Water OT - Other	Samples retu UPSF	rned via: edEx Courier		Tra	acking#									Suffici VOA Zer	ent volume sent If Applical o Headspace:	A N	
Relinquished by : (Signature)		Date:	Time:	7	ceived by: (Signat	ure)			7	Trip Blan	k Receiv	red: Yes	No MeoH	Preserv RAD Scr	een <0.5 mR/hr:	necked: Y_N	
Well 28		6-9-2	111									TBR					
Relinquished by : (Signature)		Date:	Time:	Re	ceived by: (Signat	ure)			7	Temp:	°(Bottles R	eceived:	If preserv	vation required by Lo	ogin: Date/Time	
Relinquished by : (Signature)	Date: Time:			R	Received for lab by: (Signardre)					Date: 10/23 Time: 900					Joseph Land	Condition: NCF / OK	

(1624861

			-		2.5				
remperature	9.9-0+0-8	0.4+0=0.4	5.6+0:5.6	p. 4-0-4.9	4.6+0=4.6	H-0+1-H	5.140-5.1	5,2+0=5.3	
Tracking	6331 2251 9699	10H10 HISS HESD	6337 3351 9714	16624 5564 0129	\$110 HISS HESD	1010 HISS HEST	1510 h956 hes9	6331 2251 9703	

ANALYTICAL REPORT

December 04, 2023

Alliance Technical Group - Bryant, AR

L1679725 Sample Delivery Group:

Samples Received: 11/18/2023

Project Number: 1145-21-080

Description: Entergy - White Bluff

Site: CADL - CCR

Report To: Jonathan Brown

219 Brown Lane

Little Rock, AR 72022

Entire Report Reviewed By:

Drittine Boyd

Brittnie L Boyd

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	7
Sr: Sample Results	8
MW-102S L1679725-01	8
MW-104S L1679725-02	9
MW-105S L1679725-03	10
MW-110S L1679725-04	11
MW-111S L1679725-05	12
MW- 103D L1679725-06	13
MW-104D L1679725-07	14
MW-105D L1679725-08	15
MW-107D L1679725-09	16
MW-108D L1679725-10	17
MW-109D L1679725-11	18
MW-110D L1679725-12	19
MW-113D L1679725-13	20
MW-114D L1679725-14	21
MW-115D L1679725-15	22
DUPLICATE 2 L1679725-16	23
DUPLICATE 3 L1679725-17	24
Qc: Quality Control Summary	25
Gravimetric Analysis by Method 2540 C-2011	25
Wet Chemistry by Method 2320 B-2011	32
Wet Chemistry by Method 9040C	36
Wet Chemistry by Method 9056A	38
Metals (ICP) by Method 6010B	42
Metals (ICPMS) by Method 6020	43
GI: Glossary of Terms	44
Al: Accreditations & Locations	45

46

Sc: Sample Chain of Custody

	SAMPLL	301111	MAKI			
MW-102S L1679725-01 GW			Collected by JLC/KRS	Collected date/time 11/16/23 10:20	Received da 11/18/23 09:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG2176590	1	11/22/23 19:47	11/23/23 00:23	JAC	Mt. Juliet, TN
Wet Chemistry by Method 2320 B-2011	WG2176478	1	11/23/23 09:11	11/23/23 09:11	BJM	Mt. Juliet, TN
Wet Chemistry by Method 9040C	WG2177093	1	11/24/23 17:25	11/24/23 17:25	EPW	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG2180043	1	12/01/23 21:04	12/01/23 21:04	ASM	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG2174869	1	11/29/23 09:48	11/29/23 18:34	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG2174901	1	11/29/23 09:47	11/29/23 17:44	LD	Mt. Juliet, TN
MW-104S L1679725-02 GW			Collected by JLC/KRS	Collected date/time 11/14/23 16:35	Received da 11/18/23 09:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG2174543	1	11/20/23 11:34	11/20/23 17:11	JAC	Mt. Juliet, TN
Wet Chemistry by Method 2320 B-2011	WG2174343 WG2176790	1	11/23/23 11:34	11/23/23 12:45	BJM	Mt. Juliet, TN
Wet Chemistry by Method 2320 B-2011 Wet Chemistry by Method 9040C	WG2177093	1	11/24/23 17:25	11/24/23 17:25	EPW	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG2177093 WG2180043	1	12/01/23 21:16	12/01/23 21:16	ASM	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG2174869	1	11/29/23 09:48	11/29/23 18:23	ZSA	Mt. Juliet, TN
Metals (ICP) by Method 6020	WG2174869 WG2174901	1	11/29/23 09:47	11/29/23 18:01	LD	Mt. Juliet, TN
MW-105S L1679725-03 GW			Collected by JLC/KRS	Collected date/time 11/14/23 14:00	Received da 11/18/23 09:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG2174543	1	11/20/23 11:34	11/20/23 17:11	JAC	Mt. Juliet, TN
Wet Chemistry by Method 2320 B-2011	WG2174343 WG2176478	1	11/23/23 09:20	11/23/23 09:20	BJM	Mt. Juliet, TN
Wet Chemistry by Method 2020 B-2011 Wet Chemistry by Method 9040C	WG2177093	1	11/24/23 17:25	11/24/23 17:25	EPW	Mt. Juliet, TN
	WG2177093 WG2180043	1	12/01/23 21:29	12/01/23 21:29	ASM	•
Wet Chemistry by Method 9056A	WG2174869	1	11/29/23 09:48	11/29/23 18:37	ZSA	Mt. Juliet, TN Mt. Juliet, TN
Metals (ICP) by Method 6010B Metals (ICPMS) by Method 6020	WG2174809 WG2174901	1	11/29/23 09:47	11/29/23 18:04	LD	Mt. Juliet, TN
MW-110S L1679725-04 GW			Collected by JLC/KRS	Collected date/time 11/15/23 15:55	Received da 11/18/23 09:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG2175285	1	11/21/23 14:40	11/22/23 00:12	MMF	Mt. Juliet, TN
Wet Chemistry by Method 2320 B-2011	WG2176478	1	11/23/23 09:24	11/23/23 09:24	BJM	Mt. Juliet, TN
Wet Chemistry by Method 9040C	WG2177093	1	11/24/23 17:25	11/24/23 17:25	EPW	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG2180043	1	12/01/23 21:42	12/01/23 21:42	ASM	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG2174869	1	11/29/23 09:48	11/29/23 18:40	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG2174901	1	11/29/23 09:47	11/29/23 18:08	LD	Mt. Juliet, TN
MW-111S L1679725-05 GW			Collected by JLC/KRS	Collected date/time 11/16/23 16:25	Received da 11/18/23 09:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG2176590	1	11/22/23 19:47	11/23/23 00:23	JAC	Mt. Juliet, TN
Wet Chemistry by Method 2320 B-2011	WG2176390 WG2176478	1	11/23/23 19:47	11/23/23 00:23	BJM	Mt. Juliet, TN
Wet Chemistry by Method 2320 B-2011 Wet Chemistry by Method 9040C	WG2177093	1	11/24/23 17:25	11/24/23 17:25	EPW	Mt. Juliet, TN
* *	WG2177093 WG2180043	1	12/01/23 22:07	12/01/23 22:07	ASM	Mt. Juliet, TN
Wet Chemistry by Method 9056A Wet Chemistry by Method 9056A	WG2180043 WG2180043	10	12/01/23 22:07	12/01/23 22:07	ASM	Mt. Juliet, TN
Wet Chemistry by Method 9056A Metals (ICP) by Method 6010B						
Metals (ICP) by Method 6010B	WG2174869 WG2174901	1	11/29/23 09:48	11/29/23 18:43	ZSA LD	Mt. Juliet, TN
Metals (ICPMS) by Method 6020 Metals (ICPMS) by Method 6020	WG2174901 WG2174901	1 5	11/29/23 09:47 11/29/23 09:47	11/29/23 18:19 11/29/23 19:19	LD	Mt. Juliet, TN Mt. Juliet, TN
ACCOUNT:	PROJECT:		SDG:	DAT	E/TIME:	
Alliance Technical Group, Phyant AB	1145 21 080		11670725		122 12.10	

1145-21-080

L1679725

12/04/23 12:48

Alliance Technical Group - Bryant, AR

¹Cp

PAGE:

3 of 49

			Collected by	Collected date/time	Received da	te/time
MW-103D L1679725-06 GW			JLC/KRS	11/15/23 12:20	11/18/23 09:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG2175518	1	11/22/23 10:07	11/22/23 14:15	JAC	Mt. Juliet, TN
Wet Chemistry by Method 2320 B-2011	WG2176478	1	11/23/23 09:30	11/23/23 09:30	ВЈМ	Mt. Juliet, TN
Wet Chemistry by Method 9040C	WG2177543	1	11/28/23 09:45	11/28/23 09:45	EPW	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG2180043	1	12/01/23 22:33	12/01/23 22:33	ASM	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG2174869	1	11/29/23 09:48	11/29/23 18:52	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG2174901	1	11/29/23 09:47	11/29/23 18:22	LD	Mt. Juliet, TN
			Callagtad by	Call a stad data itima a	Dogotivo di do	to Itima o
MW-104D L1679725-07 GW			Collected by JLC/KRS	Collected date/time 11/14/23 17:30	11/18/23 09:0	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG2174565	1	11/20/23 14:12	11/20/23 21:12	JAC	Mt. Juliet, TN
Wet Chemistry by Method 2320 B-2011	WG2176790	1	11/23/23 12:47	11/23/23 12:47	BJM	Mt. Juliet, TN
Wet Chemistry by Method 9040C	WG2177543	1	11/28/23 09:45	11/28/23 09:45	EPW	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG2180043	1	12/01/23 23:11	12/01/23 23:11	ASM	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG2174869	1	11/29/23 09:48	11/29/23 18:55	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG2174901	1	11/29/23 09:47	11/29/23 18:25	LD	Mt. Juliet, TN
			Collected by	Collected date/time	Pocoivod da	to/timo
MW-105D L1679725-08 GW			JLC/KRS	11/14/23 15:10	11/18/23 09:0	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG2174565	1	11/20/23 14:12	11/20/23 21:12	JAC	Mt. Juliet, TN
Net Chemistry by Method 2320 B-2011	WG2176478	1	11/23/23 09:35	11/23/23 09:35	BJM	Mt. Juliet, TN
Net Chemistry by Method 9040C	WG2177543	1	11/28/23 09:45	11/28/23 09:45	EPW	Mt. Juliet, TN
Net Chemistry by Method 9056A	WG2180043	1	12/01/23 23:24	12/01/23 23:24	ASM	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG2174869	1	11/29/23 09:48	11/29/23 18:57	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG2174901	1	11/29/23 09:47	11/29/23 18:29	LD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-107D L1679725-09 GW			JLC/KRS	11/16/23 17:50	11/18/23 09:0	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG2176590	1	11/22/23 19:47	11/23/23 00:23	JAC	Mt. Juliet, TN
Net Chemistry by Method 2320 B-2011	WG2176478	1	11/23/23 09:39	11/23/23 09:39	BJM	Mt. Juliet, TN
Net Chemistry by Method 9040C	WG2177543	1	11/28/23 09:45	11/28/23 09:45	EPW	Mt. Juliet, TN
Net Chemistry by Method 9056A	WG2180043	1	12/01/23 23:37	12/01/23 23:37	ASM	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG2174869	1	11/29/23 09:48	11/29/23 19:00	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG2174901	1	11/29/23 09:47	11/29/23 18:32	LD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-108D L1679725-10 GW			JLC/KRS	11/16/23 15:20	11/18/23 09:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG2176580	1	11/22/23 19:01	11/23/23 13:45	MMF	Mt. Juliet, TN
Wet Chemistry by Method 2320 B-2011	WG2176470	1	11/23/23 13:01	11/23/23 11:36	BJM	Mt. Juliet, TN
Wet Chemistry by Method 2020 6-2011 Wet Chemistry by Method 9040C	WG2177543	1	11/28/23 11:30	11/28/23 09:45	EPW	Mt. Juliet, TN
• •	WG2177543 WG2180043	1	12/01/23 23:49	12/01/23 23:49	ASM	Mt. Juliet, TN
Wet Chemistry by Method 9056A						
Metals (ICP) by Method 6010B	WG2174869	1	11/29/23 09:48	11/29/23 19:03	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG2174901	1	11/29/23 09:47	11/29/23 18:35	LD	Mt. Juliet, TN

¹Cp

	JAMITLL	301111	MAKI			
MW-109D L1679725-11 GW			Collected by JLC/KRS	Collected date/time 11/16/23 13:00	Received da 11/18/23 09:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG2176580	1	11/22/23 19:01	11/23/23 13:45	MMF	Mt. Juliet, TN
Wet Chemistry by Method 2320 B-2011	WG2176845	1	11/27/23 13:29	11/27/23 13:29	ВЈМ	Mt. Juliet, TN
Wet Chemistry by Method 9040C	WG2177543	1	11/28/23 09:45	11/28/23 09:45	EPW	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG2180043	1	12/02/23 00:02	12/02/23 00:02	ASM	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG2174869	1	11/29/23 09:48	11/29/23 19:06	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG2174901	1	11/29/23 09:47	11/29/23 18:39	LD	Mt. Juliet, TN
MW 110D 1 167070E 10 CW			Collected by JLC/KRS	Collected date/time 11/16/23 15:00	Received da 11/18/23 09:0	
MW-110D L1679725-12 GW						
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG2176580	1	11/22/23 19:01	11/23/23 13:45	MMF	Mt. Juliet, TN
Wet Chemistry by Method 2320 B-2011	WG2176478	1	11/23/23 10:12	11/23/23 10:12	BJM	Mt. Juliet, TN
Wet Chemistry by Method 9040C	WG2177543	1	11/28/23 09:45	11/28/23 09:45	EPW	Mt. Juliet, TN
Net Chemistry by Method 9056A	WG2180051	1	12/02/23 01:31	12/02/23 01:31	ASM	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG2174869	1	11/29/23 09:48	11/29/23 19:09	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG2174901	1	11/29/23 09:47	11/29/23 18:42	LD	Mt. Juliet, TN
MW-113D L1679725-13 GW			Collected by JLC/KRS	Collected date/time 11/15/23 13:50	Received da 11/18/23 09:0	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG2175285	1	11/21/23 14:40	11/22/23 00:12	MMF	Mt. Juliet, TN
Vet Chemistry by Method 2320 B-2011	WG2176478	1	11/23/23 10:17	11/23/23 10:17	BJM	Mt. Juliet, TN
Vet Chemistry by Method 9040C	WG2177543	1	11/28/23 09:45	11/28/23 09:45	EPW	Mt. Juliet, TN
Net Chemistry by Method 9056A	WG2180051	1	12/02/23 02:22	12/02/23 02:22	ASM	Mt. Juliet, TN
Vet Chemistry by Method 9056A	WG2180051	10	12/02/23 02:35	12/02/23 02:35	ASM	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG2174869	1	11/29/23 09:48	11/29/23 19:12	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG2174901	1	11/29/23 09:47	11/29/23 18:46	LD	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG2174901	5	11/29/23 09:47	11/29/23 19:22	LD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-114D L1679725-14 GW			JLC/KRS	11/15/23 10:10	11/18/23 09:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG2175285	1	11/21/23 14:40	11/22/23 00:12	MMF	Mt. Juliet, TN
Vet Chemistry by Method 2320 B-2011	WG2175265 WG2176790	1	11/23/23 14.40	11/23/23 12:53	BJM	Mt. Juliet, TN
	WG2176790 WG2177543		11/23/23 12:53	11/23/23 12:53	EPW	Mt. Juliet, TN Mt. Juliet, TN
Vet Chemistry by Method 9040C	WG2177543 WG2180051	1	12/02/23 09:45	11/28/23 09:45		
Wet Chemistry by Method 9056A	WG2180051 WG2174869	1 1	12/02/23 02:48	12/02/23 02:48	ASM ZSA	Mt. Juliet, TN
Metals (ICP) by Method 6010B Metals (ICPMS) by Method 6020	WG2174869 WG2174901	1	11/29/23 09:47	11/29/23 18:49	LD	Mt. Juliet, TN Mt. Juliet, TN
			Collected by JLC/KRS	Collected date/time		
MW-115D L1679725-15 GW				11/16/23 11:35	11/18/23 09:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG2176580	1	11/22/23 19:01	11/23/23 13:45	MMF	Mt. Juliet, TN
Wet Chemistry by Method 2320 B-2011	WG2176478	1	11/23/23 10:21	11/23/23 10:21	ВЈМ	Mt. Juliet, TN
Wet Chemistry by Method 9040C	WG2177543	1	11/28/23 09:45	11/28/23 09:45	EPW	Mt. Juliet, TN
Net Chemistry by Method 9056A	WG2180051	1	12/02/23 03:00	12/02/23 03:00	ASM	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG2174869	1	11/29/23 09:48	11/29/23 19:18	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG2174901	1	11/29/23 09:47	11/29/23 19:02	LD	Mt. Juliet, TN
ACCOUNT:	PROJECT:		SDG:		E/TIME:	
				=		

			Collected by	Collected date/time	Received da	to/timo
DUPLICATE 2 L1679725-16 GW			JLC/KRS	11/15/23 13:50	11/18/23 09:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG2175515	1	11/22/23 17:42	11/23/23 00:47	JAC	Mt. Juliet, TN
Wet Chemistry by Method 2320 B-2011	WG2176790	1	11/23/23 13:02	11/23/23 13:02	BJM	Mt. Juliet, TN
Wet Chemistry by Method 9040C	WG2177543	1	11/28/23 09:45	11/28/23 09:45	EPW	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG2180051	1	12/02/23 03:39	12/02/23 03:39	ASM	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG2180051	10	12/02/23 03:51	12/02/23 03:51	ASM	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG2174869	1	11/29/23 09:48	11/29/23 19:27	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG2174901	1	11/29/23 09:47	11/29/23 19:05	LD	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG2174901	5	11/29/23 09:47	11/29/23 19:31	LD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
DUPLICATE 3 L1679725-17 GW			JLC/KRS	11/15/23 15:55	11/18/23 09:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG2175515	1	11/22/23 17:42	11/23/23 00:47	JAC	Mt. Juliet, TN
Wet Chemistry by Method 2320 B-2011	WG2176478	1	11/23/23 10:25	11/23/23 10:25	BJM	Mt. Juliet, TN
Wet Chemistry by Method 9040C	WG2177543	1	11/28/23 09:45	11/28/23 09:45	EPW	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG2180051	1	12/02/23 04:04	12/02/23 04:04	ASM	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG2174869	1	11/29/23 09:48	11/29/23 19:30	ZSA	Mt. Juliet, TN

WG2174901

1

11/29/23 09:47

11/29/23 19:09

Mt. Juliet, TN

LD

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

¹Cp

Brittnie L Boyd Project Manager

Brittine Boyd

1679725

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	204		10.0	1	11/23/2023 00:23	WG2176590

Wet Chemistry by Method 2320 B-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Alkalinity	58.3		20.0	1	11/23/2023 09:11	WG2176478

Sample Narrative:

L1679725-01 WG2176478: Endpoint pH 4.5 Headspace

Wet Chemistry by Method 9040C

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	Su			date / time	
pH	6.02	<u>T8</u>	1	11/24/2023 17:25	<u>WG2177093</u>

Gl

Sample Narrative:

L1679725-01 WG2177093: 6.02 at 18.8C

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Chloride	7.75		1.00	1	12/01/2023 21:04	WG2180043
Fluoride	0.663		0.150	1	12/01/2023 21:04	WG2180043
Sulfate	25.2		5.00	1	12/01/2023 21:04	WG2180043

⁹Sc

Metals (ICP) by Method 6010B

	Result	Qualifier F	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l	r	ng/l		date / time	
Boron	ND	(0.200	1	11/29/2023 18:34	WG2174869
Lithium	0.0333	(0.0150	1	11/29/2023 18:34	WG2174869

/ -	,					
	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Barium	0.0954		0.00200	1	11/29/2023 17:44	WG2174901
Calcium	14.4		1.00	1	11/29/2023 17:44	WG2174901
Magnesium	3.01		1.00	1	11/29/2023 17:44	WG2174901
Sodium	17.7		2.00	1	11/29/2023 17:44	WG2174901
Strontium	0.294		0.0100	1	11/29/2023 17:44	WG2174901

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	253		10.0	1	11/20/2023 17:11	WG2174543

Wet Chemistry by Method 2320 B-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Alkalinity	31.7		20.0	1	11/23/2023 12:45	WG2176790

Ss

Sample Narrative:

L1679725-02 WG2176790: Endpoint pH 4.5 Headspace

Wet Chemistry by Method 9040C

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	su			date / time	
рН	5.50	<u>T8</u>	1	11/24/2023 17:25	<u>WG2177093</u>

Sample Narrative:

L1679725-02 WG2177093: 5.5 at 18.4C

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Chloride	4.39		1.00	1	12/01/2023 21:16	WG2180043
Fluoride	0.170		0.150	1	12/01/2023 21:16	WG2180043
Sulfate	65.7		5.00	1	12/01/2023 21:16	WG2180043

Sc

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	0.834		0.200	1	11/29/2023 18:23	WG2174869
Lithium	0.0412		0.0150	1	11/29/2023 18:23	WG2174869

,	•					
	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Barium	0.0329		0.00200	1	11/29/2023 18:01	WG2174901
Calcium	14.4		1.00	1	11/29/2023 18:01	WG2174901
Magnesium	3.86		1.00	1	11/29/2023 18:01	WG2174901
Sodium	23.2		2.00	1	11/29/2023 18:01	WG2174901
Strontium	0.293		0.0100	1	11/29/2023 18:01	WG2174901

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	207		10.0	1	11/20/2023 17:11	WG2174543

Wet Chemistry by Method 2320 B-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Alkalinity	68.3		20.0	1	11/23/2023 09:20	WG2176478

Sample Narrative:

L1679725-03 WG2176478: Endpoint pH 4.5 Headspace

Wet Chemistry by Method 9040C

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	Su			date / time	
рН	6.02	<u>T8</u>	1	11/24/2023 17:25	<u>WG2177093</u>

Sample Narrative:

L1679725-03 WG2177093: 6.02 at 18.4C

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Chloride	4.83		1.00	1	12/01/2023 21:29	WG2180043
Fluoride	0.171		0.150	1	12/01/2023 21:29	WG2180043
Sulfate	28.3		5.00	1	12/01/2023 21:29	WG2180043

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	ND		0.200	1	11/29/2023 18:37	WG2174869
Lithium	0.0444		0.0150	1	11/29/2023 18:37	WG2174869

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Barium	0.0765		0.00200	1	11/29/2023 18:04	WG2174901
Calcium	16.3		1.00	1	11/29/2023 18:04	WG2174901
Magnesium	3.57		1.00	1	11/29/2023 18:04	WG2174901
Sodium	18.4		2.00	1	11/29/2023 18:04	WG2174901
Strontium	0.349		0.0100	1	11/29/2023 18:04	WG2174901

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	355		10.0	1	11/22/2023 00:12	WG2175285

Ss

Cn

Wet Chemistry by Method 2320 B-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Alkalinity	ND		20.0	1	11/23/2023 09:24	WG2176478

Sample Narrative:

L1679725-04 WG2176478: Endpoint pH 4.5 Headspace

Wet Chemistry by Method 9040C

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	su			date / time	
pΗ	4.80	<u>T8</u>	1	11/24/2023 17:25	<u>WG2177093</u>

Sample Narrative:

L1679725-04 WG2177093: 4.8 at 18.4C

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Chloride	4.01		1.00	1	12/01/2023 21:42	WG2180043
Fluoride	0.444		0.150	1	12/01/2023 21:42	WG2180043
Sulfate	150		5.00	1	12/01/2023 21:42	WG2180043

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		
Boron	1.69		0.200	1	11/29/2023 18:40	WG2174869	
Lithium	0.0315		0.0150	1	11/29/2023 18:40	WG2174869	

, , ,						
	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Barium	0.0392		0.00200	1	11/29/2023 18:08	WG2174901
Calcium	6.03		1.00	1	11/29/2023 18:08	WG2174901
Magnesium	2.22		1.00	1	11/29/2023 18:08	WG2174901
Sodium	61.0		2.00	1	11/29/2023 18:08	WG2174901
Strontium	0.160		0.0100	1	11/29/2023 18:08	WG2174901

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		
Dissolved Solids	1370		20.0	1	11/23/2023 00:23	WG2176590	

Wet Chemistry by Method 2320 B-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Alkalinity	ND		20.0	1	11/23/2023 09:26	WG2176478

L1679725-05 WG2176478: Endpoint pH 4.5 Headspace

Wet Chemistry by Method 9040C

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	Su			date / time	
pH	3.86	<u>T8</u>	1	11/24/2023 17:25	<u>WG2177093</u>

Sample Narrative:

L1679725-05 WG2177093: 3.86 at 18.3C

Sample Narrative:

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Chloride	12.1		1.00	1	12/01/2023 22:07	WG2180043
Fluoride	0.869		0.150	1	12/01/2023 22:07	WG2180043
Sulfate	827		50.0	10	12/01/2023 22:20	WG2180043

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	6.67		0.200	1	11/29/2023 18:43	WG2174869
Lithium	0.0520		0.0150	1	11/29/2023 18:43	WG2174869

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Barium	0.0159		0.00200	1	11/29/2023 18:19	WG2174901
Calcium	117		1.00	1	11/29/2023 18:19	WG2174901
Magnesium	35.2		1.00	1	11/29/2023 18:19	WG2174901
Sodium	178		2.00	1	11/29/2023 18:19	WG2174901
Strontium	3.20		0.0500	5	11/29/2023 19:19	WG2174901

1679725

Collected date/time: 11/15/23 12:20

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	437		10.0	1	11/22/2023 14:15	WG2175518

²Tc

Wet Chemistry by Method 2320 B-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Alkalinity	319		20.0	1	11/23/2023 09:30	WG2176478

Sample Narrative:

L1679725-06 WG2176478: Endpoint pH 4.5 Headspace

Wet Chemistry by Method 9040C

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	su			date / time	
pH	7.90	<u>T8</u>	1	11/28/2023 09:45	<u>WG2177543</u>

Sample Narrative:

L1679725-06 WG2177543: 7.9 at 19.8C

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Chloride	6.75		1.00	1	12/01/2023 22:33	WG2180043
Fluoride	0.203		0.150	1	12/01/2023 22:33	WG2180043
Sulfate	63.7		5.00	1	12/01/2023 22:33	WG2180043

⁹Sc

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	_
Boron	0.274		0.200	1	11/29/2023 18:52	WG2174869
Lithium	0.0520		0.0150	1	11/29/2023 18:52	WG2174869

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Barium	0.0878		0.00200	1	11/29/2023 18:22	WG2174901
Calcium	55.6		1.00	1	11/29/2023 18:22	WG2174901
Magnesium	12.1		1.00	1	11/29/2023 18:22	WG2174901
Sodium	80.6		2.00	1	11/29/2023 18:22	WG2174901
Strontium	1.31		0.0100	1	11/29/2023 18:22	WG2174901

MW-104D Collected date/time: 11/14/23 17:30

SAMPLE RESULTS - 07

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	333		10.0	1	11/20/2023 21:12	WG2174565

Wet Chemistry by Method 2320 B-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Alkalinity	271		20.0	1	11/23/2023 12:47	WG2176790

Ss

Sample Narrative:

L1679725-07 WG2176790: Endpoint pH 4.5 Headspace

Wet Chemistry by Method 9040C

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	su			date / time	
рН	7.61	<u>T8</u>	1	11/28/2023 09:45	<u>WG2177543</u>

Sample Narrative:

L1679725-07 WG2177543: 7.61 at 19.4C

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Chloride	9.25		1.00	1	12/01/2023 23:11	WG2180043
Fluoride	0.202		0.150	1	12/01/2023 23:11	WG2180043
Sulfate	17.5		5.00	1	12/01/2023 23:11	WG2180043

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Boron	0.241		0.200	1	11/29/2023 18:55	WG2174869
Lithium	0.0403		0.0150	1	11/29/2023 18:55	WG2174869

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Barium	0.0663		0.00200	1	11/29/2023 18:25	WG2174901
Calcium	52.6		1.00	1	11/29/2023 18:25	WG2174901
Magnesium	11.8		1.00	1	11/29/2023 18:25	WG2174901
Sodium	41.2		2.00	1	11/29/2023 18:25	WG2174901
Strontium	1.22		0.0100	1	11/29/2023 18:25	WG2174901

MW-105D

SAMPLE RESULTS - 08

Collected date/time: 11/14/23 15:10

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	332		10.0	1	11/20/2023 21:12	WG2174565

Wet Chemistry by Method 2320 B-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Alkalinity	272		20.0	1	11/23/2023 09:35	WG2176478

Sample Narrative:

L1679725-08 WG2176478: Endpoint pH 4.5 Headspace

Wet Chemistry by Method 9040C

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	su			date / time	
рН	7.71	<u>T8</u>	1	11/28/2023 09:45	<u>WG2177543</u>

Sample Narrative:

L1679725-08 WG2177543: 7.71 at 19.3C

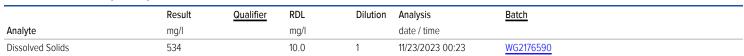
Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Chloride	8.94		1.00	1	12/01/2023 23:24	WG2180043
Fluoride	0.310		0.150	1	12/01/2023 23:24	WG2180043
Sulfate	27.0		5.00	1	12/01/2023 23:24	WG2180043

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>	
Analyte	mg/l		mg/l		date / time		
Boron	0.273		0.200	1	11/29/2023 18:57	WG2174869	
Lithium	0.0407		0.0150	1	11/29/2023 18:57	WG2174869	

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Barium	0.123		0.00200	1	11/29/2023 18:29	WG2174901
Calcium	53.7		1.00	1	11/29/2023 18:29	WG2174901
Magnesium	11.6		1.00	1	11/29/2023 18:29	WG2174901
Sodium	44.8		2.00	1	11/29/2023 18:29	WG2174901
Strontium	1.27		0.0100	1	11/29/2023 18:29	WG2174901



1679725

Gravimetric Analysis by Method 2540 C-2011

Collected date/time: 11/16/23 17:50

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Alkalinity	318		20.0	1	11/23/2023 09:39	WG2176478

Sample Narrative:

L1679725-09 WG2176478: Endpoint pH 4.5 Headspace

Wet Chemistry by Method 9040C

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	Su			date / time	
pH	8.01	<u>T8</u>	1	11/28/2023 09:45	<u>WG2177543</u>

Gl

Sample Narrative:

L1679725-09 WG2177543: 8.01 at 19.2C

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Chloride	19.9		1.00	1	12/01/2023 23:37	WG2180043
Fluoride	ND		0.150	1	12/01/2023 23:37	WG2180043
Sulfate	125		5.00	1	12/01/2023 23:37	WG2180043

⁹Sc

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	0.318		0.200	1	11/29/2023 19:00	WG2174869
Lithium	0.0498		0.0150	1	11/29/2023 19:00	WG2174869

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Barium	0.124		0.00200	1	11/29/2023 18:32	WG2174901
Calcium	79.0		1.00	1	11/29/2023 18:32	WG2174901
Magnesium	16.9		1.00	1	11/29/2023 18:32	WG2174901
Sodium	71.7		2.00	1	11/29/2023 18:32	WG2174901
Strontium	1.97		0.0100	1	11/29/2023 18:32	WG2174901

MW-108D

SAMPLE RESULTS - 10

Gravimetric Analysis by Method 2540 C-2011

Collected date/time: 11/16/23 15:20

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	464		10.0	1	11/23/2023 13:45	WG2176580

Wet Chemistry by Method 2320 B-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Alkalinity	400		20.0	1	11/23/2023 11:36	WG2176470

Ss

Sample Narrative:

L1679725-10 WG2176470: Endpoint pH 4.5 Headspace

Qc

Wet Chemistry by Method 9040C

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	Su			date / time	
pH	7.74	<u>T8</u>	1	11/28/2023 09:45	<u>WG2177543</u>

Sample Narrative:

L1679725-10 WG2177543: 7.74 at 19.2C

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Chloride	12.6		1.00	1	12/01/2023 23:49	WG2180043
Fluoride	ND		0.150	1	12/01/2023 23:49	WG2180043
Sulfate	38.6		5.00	1	12/01/2023 23:49	WG2180043

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Boron	0.344		0.200	1	11/29/2023 19:03	WG2174869
Lithium	0.0454		0.0150	1	11/29/2023 19:03	WG2174869

, , ,						
	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Barium	0.0744		0.00200	1	11/29/2023 18:35	WG2174901
Calcium	64.2		1.00	1	11/29/2023 18:35	WG2174901
Magnesium	14.1		1.00	1	11/29/2023 18:35	WG2174901
Sodium	88.0		2.00	1	11/29/2023 18:35	WG2174901
Strontium	1.57		0.0100	1	11/29/2023 18:35	WG2174901

MW-109D

SAMPLE RESULTS - 11

Collected date/time: 11/16/23 13:00

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	357		10.0	1	11/23/2023 13:45	WG2176580

Ss

Wet Chemistry by Method 2320 B-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Alkalinity	277		20.0	1	11/27/2023 13:29	WG2176845

Sample Narrative:

L1679725-11 WG2176845: Endpoint pH 4.5 Headspace

Wet Chemistry by Method 9040C

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	SU			date / time	
pH	7.80	<u>T8</u>	1	11/28/2023 09:45	<u>WG2177543</u>

Sample Narrative:

L1679725-11 WG2177543: 7.8 at 19.2C

Sc

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Chloride	6.02		1.00	1	12/02/2023 00:02	WG2180043
Fluoride	0.188	<u>P1</u>	0.150	1	12/02/2023 00:02	WG2180043
Sulfate	43.6		5.00	1	12/02/2023 00:02	WG2180043

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Boron	0.312		0.200	1	11/29/2023 19:06	WG2174869
Lithium	0.0416		0.0150	1	11/29/2023 19:06	WG2174869

, , ,						
	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Barium	0.0749		0.00200	1	11/29/2023 18:39	WG2174901
Calcium	47.6		1.00	1	11/29/2023 18:39	WG2174901
Magnesium	10.3		1.00	1	11/29/2023 18:39	WG2174901
Sodium	64.6		2.00	1	11/29/2023 18:39	WG2174901
Strontium	1.14		0.0100	1	11/29/2023 18:39	WG2174901

1679725

Collected date/time: 11/16/23 15:00

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	333		10.0	1	11/23/2023 13:45	WG2176580

²Tc

Wet Chemistry by Method 2320 B-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Alkalinity	261		20.0	1	11/23/2023 10:12	WG2176478

Sample Narrative:

L1679725-12 WG2176478: Endpoint pH 4.5 Headspace

Wet Chemistry by Method 9040C

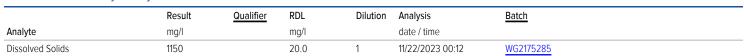
	Result	Qualifier	Dilution	Analysis	Batch
Analyte	su			date / time	
pH	8.21	<u>T8</u>	1	11/28/2023 09:45	<u>WG2177543</u>

Sample Narrative:

L1679725-12 WG2177543: 8.21 at 19.2C

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Chloride	6.23		1.00	1	12/02/2023 01:31	WG2180051
Fluoride	ND		0.150	1	12/02/2023 01:31	WG2180051
Sulfate	38.8	<u>J6</u>	5.00	1	12/02/2023 01:31	WG2180051


Sc

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	0.312		0.200	1	11/29/2023 19:09	WG2174869
Lithium	0.0398		0.0150	1	11/29/2023 19:09	WG2174869

, , ,							
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		
Barium	0.0621		0.00200	1	11/29/2023 18:42	WG2174901	
Calcium	42.7		1.00	1	11/29/2023 18:42	WG2174901	
Magnesium	9.56		1.00	1	11/29/2023 18:42	WG2174901	
Sodium	61.1		2.00	1	11/29/2023 18:42	WG2174901	
Strontium	1.10		0.0100	1	11/29/2023 18:42	WG2174901	

Gravimetric Analysis by Method 2540 C-2011

Wet Chemistry by Method 2320 B-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Alkalinity	246		20.0	1	11/23/2023 10:17	WG2176478

Ss

Sample Narrative:

L1679725-13 WG2176478: Endpoint pH 4.5 Headspace

Wet Chemistry by Method 9040C

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	Su			date / time	
pH	7.30	<u>T8</u>	1	11/28/2023 09:45	<u>WG2177543</u>

Sample Narrative:

L1679725-13 WG2177543: 7.3 at 19.1C

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Chloride	14.7		1.00	1	12/02/2023 02:22	WG2180051
Fluoride	ND		0.150	1	12/02/2023 02:22	WG2180051
Sulfate	590		50.0	10	12/02/2023 02:35	WG2180051

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Boron	0.492		0.200	1	11/29/2023 19:12	WG2174869
Lithium	0.191		0.0150	1	11/29/2023 19:12	WG2174869

, , ,						
	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Barium	0.0147		0.00200	1	11/29/2023 18:46	WG2174901
Calcium	189		1.00	1	11/29/2023 18:46	WG2174901
Magnesium	50.9		1.00	1	11/29/2023 18:46	WG2174901
Sodium	75.8		2.00	1	11/29/2023 18:46	WG2174901
Strontium	4.39		0.0500	5	11/29/2023 19:22	WG2174901

(MW-114D)

SAMPLE RESULTS - 14

Collected date/time: 11/15/23 10:10

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier RDL	Dilution	Analysis	<u>Batch</u>	
Analyte	mg/l	mg/l		date / time		
Dissolved Solids	315	10.0	1	11/22/2023 00:12	WG2175285	

Wet Chemistry by Method 2320 B-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Alkalinity	262		20.0	1	11/23/2023 12:53	WG2176790

Sample Narrative:

L1679725-14 WG2176790: Endpoint pH 4.5 Headspace

Wet Chemistry by Method 9040C

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	su			date / time	
рН	7.82	<u>T8</u>	1	11/28/2023 09:45	<u>WG2177543</u>

Sample Narrative:

L1679725-14 WG2177543: 7.82 at 18.9C

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Chloride	7.25		1.00	1	12/02/2023 02:48	WG2180051
Fluoride	ND		0.150	1	12/02/2023 02:48	WG2180051
Sulfate	25.1		5.00	1	12/02/2023 02:48	WG2180051

Sc

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	0.278		0.200	1	11/29/2023 19:15	WG2174869
Lithium	0.0380		0.0150	1	11/29/2023 19:15	WG2174869

Metals (ICPMS) by Method 6020

, , ,	•					
	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Barium	0.123		0.00200	1	11/29/2023 18:49	WG2174901
Calcium	50.4		1.00	1	11/29/2023 18:49	WG2174901
Magnesium	10.9		1.00	1	11/29/2023 18:49	WG2174901
Sodium	42.2		2.00	1	11/29/2023 18:49	WG2174901
Strontium	1.16		0.0100	1	11/29/2023 18:49	WG2174901

Alliance Technical Group - Bryant, AR

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	325		10.0	1	11/23/2023 13:45	WG2176580

Ss

Wet Chemistry by Method 2320 B-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Alkalinity	310		20.0	1	11/23/2023 10:21	WG2176478

Sample Narrative:

L1679725-15 WG2176478: Endpoint pH 4.5 Headspace

Wet Chemistry by Method 9040C

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	su			date / time	
pH	7.86	<u>T8</u>	1	11/28/2023 09:45	WG2177543

Sample Narrative:

L1679725-15 WG2177543: 7.86 at 18.9C

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Chloride	4.25	<u>B</u>	1.00	1	12/02/2023 03:00	WG2180051
Fluoride	ND		0.150	1	12/02/2023 03:00	WG2180051
Sulfate	ND		5.00	1	12/02/2023 03:00	WG2180051

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>	
Analyte	mg/l		mg/l		date / time		
Boron	0.335		0.200	1	11/29/2023 19:18	WG2174869	
Lithium	0.0430		0.0150	1	11/29/2023 19:18	WG2174869	

,	•					
	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Barium	0.0716		0.00200	1	11/29/2023 19:02	WG2174901
Calcium	40.8		1.00	1	11/29/2023 19:02	WG2174901
Magnesium	9.13		1.00	1	11/29/2023 19:02	WG2174901
Sodium	63.3		2.00	1	11/29/2023 19:02	WG2174901
Strontium	0.961		0.0100	1	11/29/2023 19:02	WG2174901

DUPLICATE 2

SAMPLE RESULTS - 16

L16797

Collected date/time: 11/15/23 13:50

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	1220		20.0	1	11/23/2023 00:47	WG2175515

Wet Chemistry by Method 2320 B-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Alkalinity	247		20.0	1	11/23/2023 13:02	WG2176790

Sample Narrative:

L1679725-16 WG2176790: Endpoint pH 4.5 Headspace

Wet Chemistry by Method 9040C

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	su			date / time	
рН	7.34	<u>T8</u>	1	11/28/2023 09:45	<u>WG2177543</u>

Sample Narrative:

L1679725-16 WG2177543: 7.34 at 18.9C

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Chloride	13.9		1.00	1	12/02/2023 03:39	WG2180051
Fluoride	ND		0.150	1	12/02/2023 03:39	WG2180051
Sulfate	607		50.0	10	12/02/2023 03:51	WG2180051

⁹Sc

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Boron	0.502		0.200	1	11/29/2023 19:27	WG2174869
Lithium	0 192		0.0150	1	11/29/2023 19:27	WG2174869

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Barium	0.0155		0.00200	1	11/29/2023 19:05	WG2174901
Calcium	191		1.00	1	11/29/2023 19:05	WG2174901
Magnesium	50.9		1.00	1	11/29/2023 19:05	WG2174901
Sodium	75.9		2.00	1	11/29/2023 19:05	WG2174901
Strontium	4.58		0.0500	5	11/29/2023 19:31	WG2174901

DUPLICATE 3

SAMPLE RESULTS - 17

L1679725

Collected date/time: 11/15/23 15:55

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	347		10.0	1	11/23/2023 00:47	WG2175515

²Tc

Wet Chemistry by Method 2320 B-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Alkalinity	ND		20.0	1	11/23/2023 10:25	WG2176478

Sample Narrative:

L1679725-17 WG2176478: Endpoint pH 4.5 Headspace

Wet Chemistry by Method 9040C

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	su			date / time	
рН	5.01	<u>T8</u>	1	11/28/2023 09:45	<u>WG2177543</u>

Sample Narrative:

L1679725-17 WG2177543: 5.01 at 19.1C

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Chloride	7.25		1.00	1	12/02/2023 04:04	WG2180051
Fluoride	1.14		0.150	1	12/02/2023 04:04	WG2180051
Sulfate	144		5.00	1	12/02/2023 04:04	WG2180051

⁹Sc

Metals (ICP) by Method 6010B

	Result	Qualifier RI	L Di	ilution	Analysis	Batch
Analyte	mg/l	m	/		date / time	
Boron	1.59	0.	200 1		11/29/2023 19:30	WG2174869
Lithium	0.0303	0.)150 1		11/29/2023 19:30	WG2174869

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Barium	0.0368		0.00200	1	11/29/2023 19:09	WG2174901
Calcium	5.69		1.00	1	11/29/2023 19:09	WG2174901
Magnesium	2.14		1.00	1	11/29/2023 19:09	WG2174901
Sodium	60.3		2.00	1	11/29/2023 19:09	WG2174901
Strontium	0.151		0.0100	1	11/29/2023 19:09	WG2174901

QUALITY CONTROL SUMMARY

Gravimetric Analysis by Method 2540 C-2011

L1679725-02,03

Method Blank (MB) (MB) R4003151-1 11/20/23 17:11

, , , , , , , , , , , , , , , , , , , ,	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Dissolved Solids	U		10.0	10.0

(OS) L1678349-05 11/20/23 17:11 • (DUP) R4003151-3 11/20/23 17:11

(,	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Dissolved Solids	457	480	1	4.91		5

Ss

L1678349-06 Original Sample (OS) • Duplicate (DUP)

(OS) L1678349-06 11/20/23 17:11 • (DUP) R4003151-4 11/20/23 17:11

(03) 210/0343 00 11/20/21	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Dissolved Solids	554	555	1	0.180		5

Laboratory Control Sample (LCS)

(LCS)	R4003151-2	11/20/23	17:11
-------	------------	----------	-------

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits
Analyte	mg/l	mg/l	%	%
Dissolved Solids	8800	8630	98.1	85.0-115

12/04/23 12:48 25 of 49

QUALITY CONTROL SUMMARY

Gravimetric Analysis by Method 2540 C-2011

U

L1679725-07,08

Method Blank (MB)

Dissolved Solids

(MB) R4003150-1 11/20/23	B) R4003150-1 11/20/23 21:12							
	MB Result	MB Qualifier	MB MDL					
Analyte	mg/l		mg/l					

Ss

(OS) L1679725-07 11/20/23 21:12 • (DUP) R4003150-3 11/20/23 21:12

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Dissolved Solids	333	329	1	1.21		5

10.0

MB RDL mg/l

10.0

L1679725-08 Original Sample (OS) • Duplicate (DUP)

(OS) L1679725-08 11/20/23 21:12 • (DUP) R4003150-4 11/20/23 21:12

(00) 21073723 00 11/20/2	Original Result				DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Dissolved Solids	332	338	1	1.79		5

Sc

Laboratory Control Sample (LCS)

(LCS) R4003150-2 11/20/23 21:12

12/04/23 12:48

QUALITY CONTROL SUMMARY

Gravimetric Analysis by Method 2540 C-2011

L1679725-04,13,14

Method Blank (MB)

(MB) R4004586-1 11/22/	23 00:12			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Dissolved Solids	U		10.0	10.0

Ss

L1678402-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1678402-01 11/22/23 00:12 • (DUP) R4004586-3 11/22/23 00:12

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Dissolved Solids	375	369	1	1.61		5

L1678497-07 Original Sample (OS) • Duplicate (DUP)

(OS) L1678497-07 11/22/23 00:12 • (DUP) R4004586-4 11/22/23 00:12

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Dissolved Solids	564	561	1	0.533		5

⁹Sc

Laboratory Control Sample (LCS)

(LCS) R4004586-2 11/22/23 00:12

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Dissolved Solids	8800	8360	95.0	85.0-115	

QUALITY CONTROL SUMMARY

Gravimetric Analysis by Method 2540 C-2011

L1679725-16,17

Method Blank (MB)

(MB) R4004330-1	11/23/23 00:47	
	MB Result	MB Qualifier

MDL	MB RDL
/I	mg/l

MB Analyte mg/l mg/ Dissolved Solids 10.0 10.0

L1678289-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1678289-01 11/23/23 00:47 • (DUP) R4004330-3 11/23/23 00:47

)	00.47 • (DOP)	K4004330-3 I	1/23/23 0	0.47		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
	mg/l	mg/l		%		%

Analyte Dissolved Solids 259 244 5.96 <u>J3</u> 5

LCS Qualifier

L1678612-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1678612-03 11/23/23 00:47 • (DUP) R4004330-4 11/23/23 00:47

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Dissolved Solids	798	822	1	2.96		5

Sc

Laboratory Control Sample (LCS)

(LCS) R4004330-2 11/23/23 00:47

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	
Analyte	mg/l	mg/l	%	%	
Dissolved Solids	8800	8750	99.4	85.0-115	

12/04/23 12:48 28 of 49

QUALITY CONTROL SUMMARY

Gravimetric Analysis by Method 2540 C-2011

L1679725-06

Method Blank (MB)

(MB) R4004046-1 11/22/23 14:15

, , , , , , , , , , , , , , , , , , , ,	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Dissolved Solids	П	1	10.0	10.0

Ss

L1678247-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1678247-02 11/22/23 14:15 • (DUP) R4004046-3 11/22/23 14:15

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Dissolved Solids	339	345	1	1.75		5

L1678402-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1678402-02 11/22/23 14:15 • (DUP) R4004046-4 11/22/23 14:15

(00) 1.070 .01 01	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Dissolved Solids	767	787	1	2.58		5

Sc

Laboratory Control Sample (LCS)

(LCS) R4004046-2 11/22/23 14:15

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Dissolved Solids	8800	8610	97.8	85.0-115	

12/04/23 12:48

29 of 49

QUALITY CONTROL SUMMARY

Gravimetric Analysis by Method 2540 C-2011

L1679725-10,11,12,15

Method Blank (MB)

(MB) R4005374-1 11/23/2			
	MB Result	MB Qualifier	MB MDL
Analyto	ma/l		ma/l

	MB Result	MB Qualifier	MR MDL	MR KDL
Analyte	mg/l		mg/l	mg/l
Dissolved Solids	U		10.0	10.0

Ss

L1679410-06 Original Sample (OS) • Duplicate (DUP)

(OS) L1679410-06 11/23/23 13:45 • (DUP) R4005374-3 11/23/23 13:45

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Dissolved Solids	495	507	1	2.40		5

L1679410-07 Original Sample (OS) • Duplicate (DUP)

(OS) L1679410-07 11/23/23 13:45 • (DUP) R4005374-4 11/23/23 13:45

(= 0, = 10.0 = 1 =	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Dissolved Solids	550	583	1	5.83	<u>J3</u>	5

Sc

Laboratory Control Sample (LCS)

(LCS) R4005374-2 11/23/23 13:45

(,					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Dissolved Solids	8800	9550	109	85.0-115	

QUALITY CONTROL SUMMARY

Gravimetric Analysis by Method 2540 C-2011

L1679725-01,05,09

Method Blank (MB)

(MB) R4004323-1 11/23/2	23 00:23
-------------------------	----------

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Dissolved Solids	U		10.0	10.0

³Ss

L1679410-05 Original Sample (OS) • Duplicate (DUP)

(OS) L1679410-05 11/23/23 00:23 • (DUP) R4004323-3 11/23/23 00:23

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Dissolved Solids	418	436	1	4.22		5

[†]Cn

⁶Qc

L1679713-06 Original Sample (OS) • Duplicate (DUP)

(OS) L1679713-06 11/23/23 00:23 • (DUP) R4004323-4 11/23/23 00:23

(30, 2.3, 3, 10, 30, 1, 20, 20	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Dissolved Solids	1460	1620	1	10.7	<u>J3</u>	5

⁹Sc

Laboratory Control Sample (LCS)

(LCS) R4004323-2 11/23/23 00:23

(===)				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits
Analyte	mg/l	mg/l	%	%
Dissolved Solids	8800	8070	91.7	85.0-115

12/04/23 12:48

QUALITY CONTROL SUMMARY

Wet Chemistry by Method 2320 B-2011

L1679725-10

Method Blank (MB)

(MB) R4003792-2 11/23/23 09:02

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Alkalinity	U		8.45	20.0

Sample Narrative:

BLANK: Endpoint pH 4.5

L1677421-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1677421-03 11/23/23 09:12 • (DUP) R4003792-3 11/23/23 09:17

, ,	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Alkalinity	ND	ND	1	0.000		20

Sample Narrative:

OS: Endpoint pH 4.5 Headspace

DUP: Endpoint pH 4.5

L1679658-01 Original Sample (OS) • Duplicate (DUP)

(OS) | 1679658-01 11/23/23 11:16 • (DLIP) P/(03792-/ 11/23/23 11:22

(03) [1079030-01 11/23/2:	, ,	ult DUP Result		DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Alkalinity	315	316	1	0.244		20

Sample Narrative:

OS: Endpoint pH 4.5 Headspace

DUP: Endpoint pH 4.5

Laboratory Control Sample (LCS)

(LCS) R4003792-	1 11/23/23	08:55
-----------------	------------	-------

(LCS) R4003/92-1 11/23/2	23 08:55				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Alkalinity	100	104	104	90.0-110	

Sample Narrative:

QUALITY CONTROL SUMMARY

L1679725-01,03,04,05,06,08,09,12,13,15,17

Method Blank (MB)

Wet Chemistry by Method 2320 B-2011

(MB) R4003790-2 11/23/23 09:01

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Alkalinity	U		8.45	20.0

Sample Narrative:

BLANK: Endpoint pH 4.5

L1679725-01 Original Sample (OS) • Duplicate (DUP)

(OS) | 1679725-01 11/23/23 09:11 • (DUP) R4003790-4 11/23/23 09:16

(03) 21073723 01 11/23/20	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Alkalinity	58.3	57.6	1	1.28		20

Sample Narrative:

OS: Endpoint pH 4.5 Headspace

DUP: Endpoint pH 4.5

L1679741-07 Original Sample (OS) • Duplicate (DUP)

(OS) L1679741-07 11/23/23 10:50 • (DUP) R4003790-6 11/23/23 10:54

(20, 2.0. 0 0	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
nalyte	mg/l	mg/l		%		%
Alkalinity	ND	ND	1	0.000		20

Sample Narrative:

OS: Endpoint pH 4.5 Headspace

DUP: Endpoint pH 4.5

Laboratory Control Sample (LCS)

(LCS) R4003790-1	11/23/23	08:54
------------------	----------	-------

(LCS) R4003790-1 11/23/2	23 08:54				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Alkalinity	100	104	104	90.0-110	

Sample Narrative:

QUALITY CONTROL SUMMARY

L1679725-02,07,14,16

Wet Chemistry by Method 2320 B-2011

Method Blank (MB)

(MB) R4003791-2 11/23/23 11:32

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Alkalinity	U		8.45	20.0

Sample Narrative:

BLANK: Endpoint pH 4.5

L1679475-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1679475-03 11/23/23 11:40 • (DUP) R4003791-3 11/23/23 11:45

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Alkalinity	121	122	1	0.773		20

Sample Narrative:

OS: Endpoint pH 4.5 Headspace

DUP: Endpoint pH 4.5

L1679741-05 Original Sample (OS) • Duplicate (DUP)

(OS) L1679741-05 11/23/23 13:35 • (DUP) R4003791-4 11/23/23 13:39

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Alkalinity	ND	ND	1	0.000		20

Sample Narrative:

OS: Endpoint pH 4.5 Headspace

DUP: Endpoint pH 4.5

Laboratory Control Sample (LCS)

	LCS	L	CS)	R400	379	}1-1	11/23/	23	11:2
--	-----	---	-----	------	-----	------	--------	----	------

(LCS) R4003/91-1 11/23/2	3 11:25				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Alkalinity	100	103	103	90.0-110	

Sample Narrative:

QUALITY CONTROL SUMMARY

Wet Chemistry by Method 2320 B-2011

L1679725-11

Method Blank (MB)

(MB	R4004737-2	11/27/23 12:43	

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Alkalinity	U		8.45	20.0

Sample Narrative:

BLANK: Endpoint pH 4.5

L1679347-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1679347-01 11/27/23 13:10 • (DUP) R4004737-3 11/27/23 13:15

(03) 21073347 01 11/27/2	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Alkalinity	450	455	1	1.10		20

Sample Narrative:

OS: Endpoint pH 4.5 Headspace

DUP: Endpoint pH 4.5

L1680141-06 Original Sample (OS) • Duplicate (DUP)

(OS) L1680141-06 11/27/23 14:59 • (DUP) R4004737-4 11/27/23 15:05

(20, 2000)	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Alkalinity	259	262	1	1.21		20

Sample Narrative:

OS: Endpoint pH 4.5 Headspace

DUP: Endpoint pH 4.5

Laboratory Control Sample (LCS)

(L	_CS)	R4004737-1	11/27/	23	12:38
----	------	------------	--------	----	-------

(LCS) R4004/37-1 11/2//2	3 12.38				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Alkalinity	100	98.4	98.4	90.0-110	

Sample Narrative:

QUALITY CONTROL SUMMARY

L1679725-01,02,03,04,05

Wet Chemistry by Method 9040C

L1679713-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1679713-01 11/24/23 17:25 • (DUP) R4004022-2 11/24/23 17:25

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	SU	SU		%		%
рН	7.32	7.31	1	0.137		1

Sample Narrative:

OS: 7.32 at 18.3C DUP: 7.31 at 18.4C

Ss

L1681356-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1681356-01 11/24/23 17:25 • (DUP) R4004022-3 11/24/23 17:25

(00) 21001000 01 11/2 1/20	17.20 (201)1	(1001022 0 1	1/2 1/20 1/	.20		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	Su	SU		%		%
рН	7.58	7.61	1	0.395		1

⁸ Al

OS: 7.58 at 18.5C

DUP: 7.61 at 18.6C

⁹Sc

Laboratory Control Sample (LCS)

(LCS) R4004022-1 11/24/23 17:25

,	Spike Amount	LCS Result	LCS Rec.	Rec. Limits
Analyte	Su	SU	%	%
На	10.0	10.0	100	99.0-101

Sample Narrative:

LCS: 10.01 at 19.2C

QUALITY CONTROL SUMMARY

L1679725-06,07,08,09,10,11,12,13,14,15,16,17

Wet Chemistry by Method 9040C

L1679320-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1679320-01 11/28/23 09:45 • (DUP) R4005014-2 11/28/23 09:45

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	SU	SU		%		%
рН	7.08	7.05	1	0.425		1

Ss

Sample Narrative:

OS: 7.08 at 19.8C DUP: 7.05 at 19.8C

L1679741-04 Original Sample (OS) • Duplicate (DUP)

(OS) L1679741-04 11/28/23 09:45 • (DUP) R4005014-3 11/28/23 09:45

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	SU	SU		%		%
рН	6.36	6.38	1	0.314		1

Sample Narrative:

OS: 6.36 at 19C DUP: 6.38 at 19C

Laboratory Control Sample (LCS)

(LCS) R4005014-1 11/28/23 09:45

Sample Narrative:

LCS: 10.02 at 20.6C

QUALITY CONTROL SUMMARY

L1679725-01,02,03,04,05,06,07,08,09,10,11

Method Blank (MB)

(MB) R4007420-1 12/01/23 09:28

Wet Chemistry by Method 9056A

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Chloride	U		0.379	1.00
Fluoride	U		0.0640	0.150
Sulfate	U		0.594	5.00

⁴Cn

L1679713-10 Original Sample (OS) • Duplicate (DUP)

(OS) L1679713-10 12/01/23 19:09 • (DUP) R4007420-3 12/01/23 19:22

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Chloride	43.2	42.9	1	0.788		15
Fluoride	0.262	0.370	1	34.3	<u>P1</u>	15
Sulfate	97.8	98.4	1	0.637		15

⁵Sr

L1679725-11 Original Sample (OS) • Duplicate (DUP)

(OS) L1679725-11 12/02/23 00:02 • (DUP) R4007420-6 12/02/23 00:15

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Chloride	6.02	5.99	1	0.605		15
Fluoride	0.188	ND	1	68.1	<u>P1</u>	15
Sulfate	43.6	43.6	1	0.118		15

9

⁹Sc

Laboratory Control Sample (LCS)

(LCS) R4007420-2 12/01/23 09:40

(LC3) R400/420-2 12/01/	/23 09.40				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Chloride	40.0	39.9	99.8	80.0-120	
Fluoride	8.00	8.39	105	80.0-120	
Sulfate	40.0	39.4	98.6	80.0-120	

QUALITY CONTROL SUMMARY

L1679725-01,02,03,04,05,06,07,08,09,10,11

Wet Chemistry by Method 9056A

L1679713-10 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1679713-10 12/01/23 19:09 • (MS) R4007420-4 12/01/23 19:34 • (MSD) R4007420-5 12/01/23 19:47

` ,	٠,		,	,								
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Chloride	40.0	43.2	76.7	76.3	83.8	82.6	1	80.0-120			0.612	15
Fluoride	8.00	0.262	8.94	8.80	108	107	1	80.0-120			1.64	15
Sulfato	40 O	97.8	121	120	58 N	55.2	1	90 0 120	16	16	0 022	15

Ср

⁴Cn

L1679725-11 Original Sample (OS) • Matrix Spike (MS)

(OS) L1679725-11 12/02/23 00:02 • (MS) R4007420-7 12/02/23 00:27

(03) 110/3/23 11 12/02/23	3 00.02 - (1413) 1	1140074207 12	2/02/23 00.27			
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits
Analyte	mg/l	mg/l	mg/l	%		%
Chloride	40.0	6.02	46.3	101	1	80.0-120
Fluoride	8.00	0.188	8.59	105	1	80.0-120
Sulfate	40.0	43.6	76.1	81.5	1	80.0-120

QUALITY CONTROL SUMMARY

L1679725-12,13,14,15,16,17

Wet Chemistry by Method 9056A Method Blank (MB)

(MB) R4007447-1 12/02/23 01:06

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Chloride	0.560	<u>J</u>	0.379	1.00
Fluoride	U		0.0640	0.150
Sulfate	U		0.594	5.00

(OS) L1679725-12 12/02/23 01:31 • (DUP) R4007447-3 12/02/23 01:44

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Chloride	6.23	6.34	1	1.68		15
Fluoride	ND	ND	1	0.000		15
Sulfate	38.8	38.5	1	0.708		15

L1679741-09 Original Sample (OS) • Duplicate (DUP)

(OS) L1679741-09 12/02/23 08:44 • (DUP) R4007447-6 12/02/23 08:57

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Chloride	3.31	3.13	1	5.60		15
Fluoride	ND	ND	1	30.1	<u>P1</u>	15
Sulfate	18.8	18.7	1	0.213		15

PAGE:

40 of 49

Laboratory Control Sample (LCS)

(LCS) R4007447-2 12/02/23 01:18

(200) 114007447 2 12/0	02/20 01.10				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Chloride	40.0	40.3	101	80.0-120	
Fluoride	8.00	8.37	105	80.0-120	
Sulfato	40.0	30 0	99.7	80 O-120	

QUALITY CONTROL SUMMARY

Wet Chemistry by Method 9056A

L1679725-12,13,14,15,16,17

L1679725-12 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1679725-12 12/02/23 01:31 • (MS) R4007447-4 12/02/23 01:57 • (MSD) R4007447-5 12/02/23 02:09

(,	' - '			/								
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Chloride	40.0	6.23	46.4	46.5	100	101	1	80.0-120			0.365	15
Fluoride	8.00	ND	8.41	8.51	105	106	1	80.0-120			1.19	15
Sulfate	40.0	38.8	72.8	69.5	85.0	76.7	1	80 0-120		.16	4 67	15

L1679741-09 Original Sample (OS) • Matrix Spike (MS)

(OS) L1679741-09 12/02/23 08:44 • (MS) R4007447-7 12/02/23 09:10

(,	()						
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	mg/l	mg/l	mg/l	%		%	
Chloride	40.0	3.31	43.0	99.4	1	80.0-120	
Fluoride	8.00	ND	8.45	105	1	80.0-120	
Sulfate	40.0	18.8	56.2	93.5	1	80.0-120	

QUALITY CONTROL SUMMARY

L1679725-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17

Method Blank (MB)

Lithium

Metals (ICP) by Method 6010B

(MB) R4006130-1 11/2	9/23 18:18			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Boron	U		0.0200	0.200
Lithium	U		0.00485	0.0150

Ss

[†]Cn

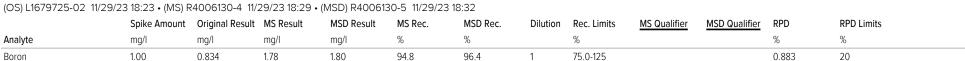
Laboratory Control Sample (LCS)

1.00

(LCS) R4006130-2 11/29/2	(LCS) R4006130-2 11/29/23 18:20										
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier						
Analyte	mg/l	mg/l	%	%							
Boron	1.00	0.964	96.4	80.0-120							
Lithium	1.00	1.00	100	80 0-120							

GI

L1679725-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)


1.02

1.04

98.2

(OS) L1679725-02 11/29/23 18:23 • (MS) R4006130-4 11/29/23 18:29 • (MSD) R4006130-5 11/29/23 18:32

0.0412

75.0-125

1.83

20

100

QUALITY CONTROL SUMMARY

L1679725-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17

Method Blank (MB)

(MB) R4006115-1 11/29/23 17:37

Metals (ICPMS) by Method 6020

(111/24)23 17.37												
	MB Result	MB Qualifier	MB MDL	MB RDL								
Analyte	mg/l		mg/l	mg/l								
Barium	U		0.000381	0.00200								
Calcium	U		0.0936	1.00								
Magnesium	U		0.0735	1.00								
Sodium	U		0.376	2.00								
Strontium	U		0.000590	0.0100								

⁵Sr

Laboratory Control Sample (LCS)

(LCS) R4006115-2	11/29/23 17:41

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Barium	0.0500	0.0462	92.4	80.0-120	
Calcium	5.00	4.78	95.6	80.0-120	
Magnesium	5.00	4.76	95.2	80.0-120	
Sodium	5.00	5.00	100	80.0-120	
Strontium	0.0500	0.0460	92.0	80.0-120	

L1679725-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1679725-01 11/29/23 17:44 • (MS) R4006115-4 11/29/23 17:51 • (MSD) R4006115-5 11/29/23 17:54

(03) 21073723 01 11/2	.5/25 17.44 - (1415) 13	4000113 + 11/2	3/23 17.31 - (11	(13D) (14000113	5 11/25/25 17.	5-1						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Barium	0.0500	0.0954	0.140	0.140	89.4	88.8	1	75.0-125			0.206	20
Calcium	5.00	14.4	18.7	18.8	87.4	88.8	1	75.0-125			0.367	20
Magnesium	5.00	3.01	7.81	7.91	95.9	97.8	1	75.0-125			1.24	20
Sodium	5.00	17.7	22.0	22.4	86.1	93.9	1	75.0-125			1.76	20
Strontium	0.0500	0.294	0.337	0.339	85.8	89.8	1	75.0-125			0.584	20

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appreviations and	d Definitions
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

	·
В	The same analyte is found in the associated blank.
J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.
P1	RPD value not applicable for sample concentrations less than 5 times the reporting limit.
T8	Sample(s) received past/too close to holding time expiration.

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama 40660	Nebraska	NE-OS-15-05
Alaska 17-026	Nevada	TN000032021-1
Arizona AZ0612	New Hampshire	2975
Arkansas 88-0469	New Jersey-NELAP	TN002
California 2932	New Mexico ¹	TN00003
Colorado TN00003	New York	11742
Connecticut PH-0197	North Carolina	Env375
Florida E87487	North Carolina 1	DW21704
Georgia NELAP	North Carolina ³	41
Georgia ¹ 923	North Dakota	R-140
ldaho TN00003	Ohio-VAP	CL0069
Illinois 200008	Oklahoma	9915
Indiana C-TN-01	Oregon	TN200002
lowa 364	Pennsylvania	68-02979
Kansas E-10277	Rhode Island	LAO00356
Kentucky ^{1 6} KY90010	South Carolina	84004002
Kentucky ² 16	South Dakota	n/a
ouisiana Al30792	Tennessee 1 4	2006
ouisiana LA018	Texas	T104704245-20-18
Maine TN00003	Texas ⁵	LAB0152
Maryland 324	Utah	TN000032021-11
Massachusetts M-TN003	Vermont	VT2006
Michigan 9958	Virginia	110033
Minnesota 047-999-395	Washington	C847
Mississippi TN00003	West Virginia	233
Missouri 340	Wisconsin	998093910
Montana CERT0086	Wyoming	A2LA
A2LA – ISO 17025 1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵ 1461.02	DOD	1461.01
Canada 1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

GBMc & Associates - Bryant, AR Alliance 219 Brown Lane			Accounts Payable Pres Chk					77			Analysis						Pa	nce		
Little Rock, AR 72022			Bryant, AR 72022														PEOPLE	ADVANCING SCIENCE		
Report to: Jonathan Brown		Email To: Jonathan.Brown@AllianceTG.com;Jhouse@trcc													5	2065 Lebanon Rd Mou jubmitting a sample via	this chain of custody			
Project Description: Entergy - White Bluff		City/State Collected:		Please Circle: PT MT CT ET					res							9	constitutes acknowledge Pace Terms and Condition https://info.pacelabs.co erms.pdf			
Phone: 501-847-7077	Client Project # 1145-21-080			Lab Project # GBMCBAR-ENTERGYWB					250mlHDPE-NoPres	π - (1, ~)						1	F07	17		
Collected by (print): JLC /KR5	Site/Facility ID # CADL - CCR			P.O. #				HNO3	mIHDP	res						t	Acctnum: GBMCBAR			
Collected by (∮ignature): Immediately	Rush? (Lab MUST Be NotifiedSame DayFive DayNext Day5 Day (Rad Onlone)Two Day10 Day (Rad On			Date Results Needed				250mlHDPE-HNO3	H	1L-HDPE NoPres						P	Template:T198831 Prelogin: P1032739 PM: 829 - Brittnie L Boyd			
Packed on Ice N Y Sample ID	Three Day Comp/Grab Matrix * Depth			Da	ite	Time	of Cntrs	Ca	, F, SO4,	TDS 11-4							hipped Via: Fe	edEX Ground		
MW-1015				+				m`	CI,	1	-						Kemarks	Sample # (lab only)		
MW-102S		GW	1	1	,													451.2		
	6	GW		11/16/	23	1020	5	-	-	-		20					5.35	-01		
MW-103S	_	GW													000					
MW-104S	6	GW		11/14	23	1635	5	-	-	/							5.06	-01		
MW-105S	6	GW		11/14	23	400	5		-	-	E C						5.49	-03		
MW-1065		GW	-	7 7																
MW-110S	6	GW		1/15	123	1555	5	_	-	-							4.35	-0U		
MW-111S	6	GW		11/14		1625	5	-	_	-							3.87	16		
MW-101D		GW		1117		1	1													
MW-102D		GW										10		43.1						
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Remarks:										pH Temp Flow Other					Sample Receipt Checkvist COC Seal Present/Intact: NP Y N COC Signed/Accurate: NP N Bottles arrive intact: NP N Correct bottles used: N				
DW - Drinking Water OT - Other	Samples return UPS Fed	ed via: ExCourier			Tracki			23	3			04			VOA Ze	ero Head		Ay_N		
Relinquished by : (Signature) Date:			3 12	e: 200	Receiv	ed by: (Signa	ture)					1		es / No HCL / MeoH TBR	Preservation Correct/Checked: 7 N RAD Screen <0.5 mR/hr: Y N					
Reinquished by : (Signature)		Date:	Tim	e;	Receiv	Received by: (Signature)					Temp[]		1	les Received:	If preservation required by Login: Date/Time					
Relinquished by : (Signature) Date:			Tim	e:	Receive	ved for lab by	(Signat	ture)		17	Date: 11-18	-73	Tim	900	Hold:			Condition: NCF OK		

			Billing into	ormatio	n:		1	1			Analysis	/ Conta	ner / Pre	CL	in all front and a			
GBMc & Associates - Bryant, AR Alli ence 219 Brown Lane Little Rock, AR 72022			Account 219 Bro	ts Pay	able		Pres Chk	27			Allalvsis	Conra	ner / Pre	SPIVATIVE		Cha	ain of Custody	Page of
			Bryant,	AR 72	022												PEOPLE	ADVANCING SCIENCE
Report to: Jonathan Brown		Email To: Jonathan.	Brown	e@trcc									1206	5 Lebanon Rd Mou	LIET, TN ont Juliet, TN 37122			
Project Description: Entergy - White Bluff	City/ State					Please Circle:			res							Subn cons Pace http:	nitting a sample via titutes acknowledge Terms and Condition ://info.pacelabs.co	this chain of custody ment and acceptance of the
Phone: 501-847-7077	Client Project # 1145-21-080			Lab Project # GBMCBAR-ENTERGYWB					250mlHDPE-NoPres			12.			SDG #			0701722
Collected by (print): TLC/KR5	Site/Facility ID # CADL - CCR			P.O. #					nIHDP	es							ole#	
Collected by (signature):	Same D		ACTUMENTS OF THE COURSE OF				HDPE-		E NoPres				4-	1 -	Ten	tnum: GBN nplate:T198 login: P103	8831	
Immediately Packed on Ice N Y	Next Day 5 Day (Rad Only) Two Day 10 Day (Rad Only) Three Day				Date Result	s Needed	No. of	250mlHDPE-HNO3	SO4, PH	1L-HDPE						PM	829 Britte	ie L Boyd
Sample ID	Comp/Grab Matrix * Depth				Date	Time	Cntrs	B, Ca	Cl, F, S	TDS 1						Ship	ped Via: Fe	dEX Ground Sample # (lab only)
MW-103D	6	GW	1	11/	5/23	1220	5			-						7	.30	- 4 10
MW-104D	6	GW		1 7	1	1730	5			-					0 100			- OV
MW-105D	6	GW		1 /	14/23		5			-	-				800		.95	-04
MW-106D		GW		11/	11/25	13/0	10	331					-		1000	- (.27	-06
MW-107D	6	GW		11/	16/23	1750	-			-						-		
MW-108D	1	GW	-	1	16/23	1520	5		_		-	-					-/3	-09
MW-109D		GW		1.11	-				-								12	-10
MW-110D		GW		1 1	6/23	1360	5						-				28	-11
MW-112D	-			1//1	5/23	1500	2		-	-					VI.0.1	_ /	181	-12
MW-113D	-	GW			1		+_			0.0								
* ******	6	GW	1	11/1	5/23	1350	5		-	-					23	6	.84	13
SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Remarks:										pH Flow		Temp_ Other_		COC Sea COC Sig Bottles	Sample Real Present gned/Accurate arrive toottles	intact:	NP Y N
DW - Drinking Water OT - Other	Samples returned UPS FedEx				Trackin	ng#		7/2	7/23 3			1 0	2419			ient volu If ro Headsp	Applicabl	e Y N
Relinquished by (Signature)	Da	te:	Time:	200		Received by: (Signature)				_			ed: Yes	L/MeoH	Preservation Correct/Checked: N RAD Screen <0.5 mR/hr: Y N			
Refinquished by : (Signature)	Da	te:	Time	:	Receiv	ed by: (Signat	ture)				Temp			Received:	If preservation required by Login: Date/Time			
Relinquished by : (Signature) Date:			Time	:	Receiv	ed for lab by:	(Signatu		17	-	Date: //-/8		Time:		Hold: Condition: NCF OK			

CDMc & Associates	D A.		Cinnig iiii	ormation.			Too and	1		Analysis	/ Contain	ner / Pres	ervative	-	CI	hain of Custoo	fy Page of
GBMc & Associates - 219 Brown Lane Little Rock, AR 72022	- Bryant, Ar	•	219 Bro	ts Payable own Ln. AR 72022		Pres Chk	27									P	ace.
Report to: Jonathan Brown			Email To:			terr.							N/4				ULIET, TN
Project Description:		City/State	Jonathan	.Brown@Alliance	Please C		100		10						Sul	bmitting a sample v	ount Juliet, TN 37122 ria this chain of custody agment and acceptance of the
Entergy - White Bluff		Collected:			PT MT		1- 1	res					500		Par	ce Terms and Condi tps://info.pacelabs.	tions found at: com/hubfs/pas-standard-
Phone: 501-847-7077	Client Proje 1145-21-0			GBMCBAR-I	ENTERGYW	В		E-NoP							-	oG#	(1990)
Collected by (print): TLC/KRS	Site/Facility			P.O. #			HNO3	250mIHDPE-NoPres	Sa					31	100	able#	
Collected by (signature):	Same	(Lab MUST Be	Day	Quote #			HDPE-		NoPres				12		Te	mplate:T19	8831
Immediately Packed on Ice N Y	Next D Two D Three	Day 5 Day Day 10 Day	(Rad Only) ay (Rad Only)	Date Resul	ts Needed	No.	250mIHDPE-HNO3	SO4, PH	11-HDPE				- 12	-		elogin: P10 1: 829 - Britt 3:	
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	Ca	T,	TDS 11			8			Shi	ipped Via: F	edEX Ground
MW-114D	1	GW	1	11/1/2	1 440		œ`	C,	1		-	- 9					Sample # (lab only)
MW-115D	6	GW		11/15/23		5	-	_								7.10	-14
MW-118D	6	GW		11/14/23	1153	5	-		_			- 8				7.14	-15
FIELD BLANK 1	-	GW				-											
UPLICATE 1		GW	-		-	-		-									911-17
IELD BLANK 2	-	GW								\vdash				244			
UPLICATE 2 MW 1130		GW	-	41.1.		-				\vdash							
IELD BLANK 3	6	GW	-	11/15/23	1350	5		_	-			-		1/2-1/1	6	. 84	-16
OUPLICATES MW 1105		GW		11/-/-	1,000					\vdash		-					
14101103	6	GW		11/15/23	1555	5								1000	4	1.35	77
Matrix: S - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Remarks:	1		1		1-1				pH _ Flow_		Temp		COC Sea COC Sig Bottles	1 Preser ned/Accu arrive	intact:	NP Y N
DW - Drinking Water DT - Other	Samples returned UPS FedEx			Tracki	ng#	71	23		33	94	54	119		Suffici	If	ime sent: Applicabl	₹ _N
Relinquished by : (Signature)	D	ate: 11/17/2	3 12	Receiv	ed by: (Signat						Receive	d: Yes / HCI	/ MeoH	Preserv	ro Headsp vation Co reen <0.5	orrect/Che	cked: $Y = N$
Reinquished by : (Signature)	D	aye:	Time	: Receiv	ed by: (Signat	ure)			7	emp:D	PAXC 0= 1		Received:	If preserv	vation req	uired by Log	in: Date/Time
Relinquished by : (Signature)	D	ate:	Time	Receive	red for lab by:	(Signatu	23-	17		Date:		Time:	900	Hold:			Condition: NCF / OK

R5

11/18 NCF-L1679725 GBMCBAR

· 医人名日本 医阿里姓氏氏反应 医皮肤炎性 医甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基	
Members Nicolle Faulk (responsible) BB Brittnie Boyd	
Due on 24 November 2023 5:00 PM for target Done	
Login Clarification needed Chain of custody is incomplete Please specify Metals requested	
Please specify TCLP requested Received additional samples not listed on COC	
Sample IDs on containers do not match IDs on COC	O
Chain of Custody is missing	
If no COC: Received by:	
If no COC: Date/Time:	
If no COC: Temp./Cont.Rec./pH:	Ĭ
If no COC: Carrier:	
If no COC: Tracking #:	
Client informed by call	
Client informed by Email	
ned	
Date/Time: 11/20 0950	
BB	
Comment Contact: Jonathan Brown	
X5-11- T11.	MG 20.2 Good not become
Received MW-108S 11/16/23 1415 not listed on COC. Same p/t# as other containers. Added as	2. Same p/t# as other containers. Added as
-18	
Brittnie Boyd	20 November 2023 9:50 AM
Please place sample on HOLD.	
Nicolle Faulk	21 November 2023 7:39 AM
2 400	

11/21/2023, 7:39 AM 1 of 1

Pace Analytical® ANALYTICAL REPORT

December 14, 2023

Alliance Technical Group - Bryant, AR

Sample Delivery Group: L1680471

Samples Received: 11/21/2023

Project Number: 1145-21-080

Description: Entergy - White Bluff

Site: CADL-CCR

Report To: Jonathan Brown

219 Brown Lane

Little Rock, AR 72022

Entire Report Reviewed By:

Brittine Boyd

Brittnie L Boyd

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	6
Sr: Sample Results	7
MW-101S L1680471-01	7
MW-106S L1680471-02	8
MW-101D L1680471-03	9
MW-102D L1680471-04	10
MW-118D L1680471-05	11
FIELD BLANK 1 L1680471-06	12
FIELD BLANK 2 L1680471-07	13
FIELD BLANK 3 L1680471-08	14
MW-112D L1680471-09	15
FIELD BLANK L1680471-10	16
MW-106D L1680471-11	17
Qc: Quality Control Summary	18
Gravimetric Analysis by Method 2540 C-2011	18
Wet Chemistry by Method 2320 B-2011	19
Wet Chemistry by Method 9040C	21
Wet Chemistry by Method 9056A	23
Mercury by Method 7470A	30
Metals (ICP) by Method 6010B	31
Metals (ICPMS) by Method 6020	32
GI: Glossary of Terms	34
Al: Accreditations & Locations	35

Sc: Sample Chain of Custody

36

SAMPLE SUMMARY

			Collected by JLC/KRS	Collected date/time 11/17/23 12:15	Received date/time 11/21/23 09:00	
MW-101S L1680471-01 GW Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time	,	
Gravimetric Analysis by Method 2540 C-2011	WG2177009	1	11/24/23 13:29	11/24/23 19:03	MMF	Mt. Juliet, TN
Wet Chemistry by Method 2320 B-2011	WG2177910	1	11/27/23 15:21	11/27/23 15:21	BJM	Mt. Juliet, TN
Wet Chemistry by Method 9040C	WG2177546	1	11/27/23 14:49	11/27/23 14:49	ARD	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG2180080	1	11/30/23 23:50	11/30/23 23:50	GEB	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG2176334	1	11/30/23 11:16	11/30/23 16:59	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG2179561	1	11/30/23 11:44	11/30/23 15:54	SJM	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG2179561	1	11/30/23 11:44	12/01/23 14:16	JPD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-106S L1680471-02 GW			JLC/KRS	11/17/23 16:05	11/21/23 09:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Crayimatric Analysis by Mathed 2E40 C 2011	WC2177000	1			MMT	M+ Juliot TN
Gravimetric Analysis by Method 2540 C-2011	WG2177009	1	11/24/23 13:29	11/24/23 19:03	MMF	Mt. Juliet, TN
Wet Chemistry by Method 2320 B-2011	WG2177910 WG2177546	1	11/27/23 15:24	11/27/23 15:24	BJM	Mt. Juliet, TN
Wet Chemistry by Method 9040C	WG2177546 WG2180080	1 1	11/27/23 14:49 12/01/23 00:28	11/27/23 14:49 12/01/23 00:28	ARD GEB	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG2180080	10	12/01/23 00:28	12/01/23 00:28	GEB	Mt. Juliet, TN
Wet Chemistry by Method 9056A Metals (ICP) by Method 6010B	WG2176334	10	11/30/23 11:16	11/30/23 17:02	ZSA	Mt. Juliet, TN Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG2179561	1	11/30/23 11:10	11/30/23 17:52	SJM	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG2179561	1	11/30/23 11:44	12/01/23 14:20	JPD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-101D L1680471-03 GW			JLC/KRS	11/17/23 13:20	11/21/23 09:0	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG2177009	1	11/24/23 13:29	11/24/23 19:03	MMF	Mt. Juliet, TN
Wet Chemistry by Method 2320 B-2011	WG2177910	1	11/27/23 15:47	11/27/23 15:47	BJM	Mt. Juliet, TN
Wet Chemistry by Method 9040C	WG2177546	1	11/27/23 14:49	11/27/23 14:49	ARD	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG2180080	1	12/01/23 00:54	12/01/23 00:54	GEB	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG2176334	1	11/30/23 11:16	11/30/23 17:05	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG2179561	1	11/30/23 11:44	11/30/23 16:01	SJM	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG2179561	1	11/30/23 11:44	12/01/23 14:23	JPD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-102D L1680471-04 GW			JLC/KRS	11/17/23 11:10	11/21/23 09:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG2177009	1	11/24/23 13:29	11/24/23 19:03	MMF	Mt. Juliet, TN
Wet Chemistry by Method 2320 B-2011	WG2177910	1	11/27/23 15:55	11/27/23 15:55	BJM	Mt. Juliet, TN
Wet Chemistry by Method 9040C	WG2177546	1	11/27/23 14:49	11/27/23 14:49	ARD	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG2180080	1	12/01/23 01:07	12/01/23 01:07	GEB	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG2176334	1	11/30/23 11:16	11/30/23 17:07	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG2179561	1	11/30/23 11:44	11/30/23 16:05	SJM	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG2179561	1	11/30/23 11:44	12/01/23 14:27	JPD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-118D L1680471-05 GW			JLC/KRS	11/17/23 09:30	11/21/23 09:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG2177009	1	11/24/23 13:29	11/24/23 19:03	MMF	Mt. Juliet, TN
Wet Chemistry by Method 2320 B-2011	WG2177912	1	11/28/23 09:55	11/28/23 09:55	ВЈМ	Mt. Juliet, TN
Wet Chemistry by Method 9040C	WG2177546	1	11/27/23 14:49	11/27/23 14:49	ARD	Mt. Juliet, TN
ACCOUNT:	PROJECT:		SDG:	DAT	E/TIME:	F

1145-21-080

Alliance Technical Group - Bryant, AR

L1680471

12/14/23 11:13

PAGE: 3 of 41

²Tc

Ss

⁴Cn

Sr

Qc

GI

βAI

⁹Sc

SAMPLE SUMMARY

			Collected by JLC/KRS	Collected date/time 11/17/23 09:30	Received date/time 11/21/23 09:00		
MW-118D L1680471-05 GW	Detel	Dileties					
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location	
Wet Chemistry by Method 9056A	WG2180080	1	12/01/23 01:32	12/01/23 01:32	GEB	Mt. Juliet, TN	
Metals (ICP) by Method 6010B	WG2176334	1	11/30/23 11:16	11/30/23 17:10	ZSA	Mt. Juliet, TN	
Metals (ICPMS) by Method 6020	WG2179561	1	11/30/23 11:44	11/30/23 16:08	SJM	Mt. Juliet, TN	
Metals (ICPMS) by Method 6020	WG2179561	5	11/30/23 11:44	12/01/23 14:30	JPD	Mt. Juliet, TN	
			Collected by	Collected date/time	Received da	te/time	
FIELD BLANK 1 L1680471-06 GW			JLC/KRS	11/17/23 15:15	11/21/23 09:0	00	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location	
Gravimetric Analysis by Method 2540 C-2011	WG2177009	1	11/24/23 13:29	11/24/23 19:03	MMF	Mt. Juliet, TN	
Net Chemistry by Method 2320 B-2011	WG2177912	1	11/28/23 10:00	11/28/23 10:00	BJM	Mt. Juliet, TN	
Vet Chemistry by Method 9040C	WG2178460	1	11/28/23 12:30	11/28/23 12:30	EPW	Mt. Juliet, TN	
Wet Chemistry by Method 9056A	WG2180080	1	12/01/23 02:23	12/01/23 02:23	GEB	Mt. Juliet, TN	
Metals (ICP) by Method 6010B	WG2176334	1	11/30/23 11:16	11/30/23 17:18	ZSA	Mt. Juliet, TN	
Metals (ICPMS) by Method 6020	WG2179561	1	11/30/23 11:44	11/30/23 16:18	SJM	Mt. Juliet, TN	
FIELD BLANK 2 L1680471-07 GW			Collected by JLC/KRS	Collected date/time 11/17/23 15:15	Received data		
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location	
			date/time	date/time			
Gravimetric Analysis by Method 2540 C-2011	WG2177009	1	11/24/23 13:29	11/24/23 19:03	MMF	Mt. Juliet, TN	
Net Chemistry by Method 2320 B-2011	WG2177912	1	11/28/23 10:08	11/28/23 10:08	BJM	Mt. Juliet, TN	
Net Chemistry by Method 9040C	WG2178460	1	11/28/23 12:30	11/28/23 12:30	EPW	Mt. Juliet, TN	
Net Chemistry by Method 9056A	WG2180082	1	12/04/23 14:30	12/04/23 14:30	GEB	Mt. Juliet, TN	
Metals (ICP) by Method 6010B	WG2176334	1	11/30/23 11:16	11/30/23 17:21	ZSA	Mt. Juliet, TN	
Metals (ICPMS) by Method 6020	WG2179561	1	11/30/23 11:44	11/30/23 16:22	SJM	Mt. Juliet, TN	
			Collected by	Collected date/time	Received da	te/time	
FIELD BLANK 3 L1680471-08 GW			JLC/KRS	11/17/23 15:15	11/21/23 09:0	00	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location	
			date/time	date/time			
Gravimetric Analysis by Method 2540 C-2011	WG2177009	1	11/24/23 13:29	11/24/23 19:03	MMF	Mt. Juliet, TN	
Wet Chemistry by Method 2320 B-2011	WG2177912	1	11/28/23 10:12	11/28/23 10:12	BJM	Mt. Juliet, TN	
Wet Chemistry by Method 9040C	WG2178460	1	11/28/23 12:30	11/28/23 12:30	EPW	Mt. Juliet, TN	
Net Chemistry by Method 9056A	WG2180082	1	12/04/23 15:25	12/04/23 15:25	GEB	Mt. Juliet, TN	
Metals (ICP) by Method 6010B	WG2176334	1	11/30/23 11:16	11/30/23 17:24	ZSA	Mt. Juliet, TN	
Metals (ICPMS) by Method 6020	WG2179561	1	11/30/23 11:44	11/30/23 16:25	SJM	Mt. Juliet, TN	
MW-112D L1680471-09 GW			Collected by JLC/KRS	Collected date/time 11/17/23 14:35	Received da: 11/21/23 09:0		
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location	
			date/time	date/time			
		1	11/24/23 13:29	11/24/23 19:03	MMF	Mt. Juliet, TN	
Gravimetric Analysis by Method 2540 C-2011	WG2177009	1					
	WG2177009 WG2177912	1	11/28/23 10:43	11/28/23 10:43	ВЈМ	Mt. Juliet, TN	
Wet Chemistry by Method 2320 B-2011					BJM EPW		
Wet Chemistry by Method 2320 B-2011 Wet Chemistry by Method 9040C	WG2177912	1	11/28/23 10:43	11/28/23 10:43		Mt. Juliet, TN	
Wet Chemistry by Method 2320 B-2011 Wet Chemistry by Method 9040C Wet Chemistry by Method 9056A	WG2177912 WG2178460	1 1	11/28/23 10:43 11/28/23 12:30	11/28/23 10:43 11/28/23 12:30	EPW	Mt. Juliet, TN Mt. Juliet, TN	
Wet Chemistry by Method 2320 B-2011 Wet Chemistry by Method 9040C Wet Chemistry by Method 9056A Wet Chemistry by Method 9056A	WG2177912 WG2178460 WG2183484	1 1 10	11/28/23 10:43 11/28/23 12:30 12/06/23 00:59	11/28/23 10:43 11/28/23 12:30 12/06/23 00:59	EPW GEB	Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN	
Gravimetric Analysis by Method 2540 C-2011 Wet Chemistry by Method 2320 B-2011 Wet Chemistry by Method 9040C Wet Chemistry by Method 9056A Wet Chemistry by Method 9056A Metals (ICP) by Method 6010B Metals (ICPMS) by Method 6020	WG2177912 WG2178460 WG2183484 WG2183941	1 1 10 10	11/28/23 10:43 11/28/23 12:30 12/06/23 00:59 12/07/23 00:26	11/28/23 10:43 11/28/23 12:30 12/06/23 00:59 12/07/23 00:26	EPW GEB GEB	Mt. Juliet, TN	

SAMPLE SUMMARY

FIELD BLANK L1680471-10 GW			Collected by JLC/KRS	Collected date/time 11/17/23 15:15	Received date/time 11/21/23 09:00	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG2177009	1	11/24/23 13:29	11/24/23 19:03	MMF	Mt. Juliet, TN
Net Chemistry by Method 2320 B-2011	WG2177912	1	11/28/23 10:48	11/28/23 10:48	BJM	Mt. Juliet, TN
Net Chemistry by Method 9040C	WG2178460	1	11/28/23 12:30	11/28/23 12:30	EPW	Mt. Juliet, TN
Net Chemistry by Method 9056A	WG2183484	1	12/06/23 01:27	12/06/23 01:27	GEB	Mt. Juliet, TN
Net Chemistry by Method 9056A	WG2183941	1	12/07/23 00:58	12/07/23 00:58	GEB	Mt. Juliet, TN
Mercury by Method 7470A	WG2176224	1	11/27/23 19:33	11/28/23 22:44	NDL	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG2176334	1	11/30/23 11:16	11/30/23 15:52	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG2176349	1	11/29/23 14:33	11/30/23 14:45	JPD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-106D L1680471-11 GW			JLC/KRS	11/17/23 17:10	11/21/23 09:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG2177009	1	11/24/23 13:29	11/24/23 19:03	MMF	Mt. Juliet, TN
Net Chemistry by Method 2320 B-2011	WG2177912	1	11/28/23 10:51	11/28/23 10:51	BJM	Mt. Juliet, TN
Net Chemistry by Method 9040C	WG2178460	1	11/28/23 12:30	11/28/23 12:30	EPW	Mt. Juliet, TN
Not Character by Mother of COECA		10	12/06/23 01:54	12/06/23 01:54	GEB	Mt. Juliet, TN
Net Chemistry by Method 9056A	WG2183484	10	12/06/23 01:54	12/00/23 01.34	GED	Mit. Juliet, TN
Wet Chemistry by Method 9056A Wet Chemistry by Method 9056A	WG2183484 WG2183941	10	12/06/23 01:54	12/07/23 01:29	GEB	Mt. Juliet, TN
						,

WG2179561

5

11/30/23 11:44

12/01/23 14:37

JPD

Mt. Juliet, TN

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Brittnie L Boyd Project Manager

Drittine Boyd

PAGE: 6 of 41

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	194		10.0	1	11/24/2023 19:03	WG2177009

Wet Chemistry by Method 2320 B-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Alkalinity	50.5		20.0	1	11/27/2023 15:21	WG2177910

Sample Narrative:

L1680471-01 WG2177910: Endpoint pH 4.5 Headspace

Wet Chemistry by Method 9040C

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	su			date / time	
pH	6.04	<u>T8</u>	1	11/27/2023 14:49	<u>WG2177546</u>

Sample Narrative:

L1680471-01 WG2177546: 6.04 at 19.2C

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Chloride	7.38		1.00	1	11/30/2023 23:50	WG2180080
Fluoride	ND		0.150	1	11/30/2023 23:50	WG2180080
Sulfate	47.7	<u>J6</u>	5.00	1	11/30/2023 23:50	WG2180080

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Boron	ND		0.200	1	11/30/2023 16:59	WG2176334
Lithium	0.0398		0.0150	1	11/30/2023 16:59	WG2176334

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Barium	0.0536		0.00200	1	12/01/2023 14:16	WG2179561
Calcium	15.0		1.00	1	11/30/2023 15:54	WG2179561
Magnesium	3.90		1.00	1	11/30/2023 15:54	WG2179561
Sodium	25.8		2.00	1	11/30/2023 15:54	WG2179561
Strontium	0.351		0.0100	1	12/01/2023 14:16	WG2179561

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	1040		20.0	1	11/24/2023 19:03	WG2177009

Wet Chemistry by Method 2320 B-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Alkalinity	ND		20.0	1	11/27/2023 15:24	WG2177910

Ss

Sample Narrative:

L1680471-02 WG2177910: Endpoint pH 4.5 Headspace

Wet Chemistry by Method 9040C

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	su			date / time	
pH	4.00	<u>T8</u>	1	11/27/2023 14:49	WG2177546

Sample Narrative:

L1680471-02 WG2177546: 4 at 19.3C

Sc

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Chloride	12.6		1.00	1	12/01/2023 00:28	WG2180080
Fluoride	0.695		0.150	1	12/01/2023 00:28	WG2180080
Sulfate	698		50.0	10	12/01/2023 00:41	WG2180080

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	6.91		0.200	1	11/30/2023 17:02	WG2176334
Lithium	0.0251		0.0150	1	11/30/2023 17:02	WG2176334

, , ,						
	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Barium	0.0206		0.00200	1	12/01/2023 14:20	WG2179561
Calcium	40.5		1.00	1	11/30/2023 15:58	WG2179561
Magnesium	23.0		1.00	1	11/30/2023 15:58	WG2179561
Sodium	219		2.00	1	11/30/2023 15:58	WG2179561
Strontium	1.39		0.0100	1	12/01/2023 14:20	WG2179561

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	297		10.0	1	11/24/2023 19:03	WG2177009

Ss

Wet Chemistry by Method 2320 B-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Alkalinity	218		20.0	1	11/27/2023 15:47	WG2177910

Sample Narrative:

L1680471-03 WG2177910: Endpoint pH 4.5 Headspace

Wet Chemistry by Method 9040C

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	su			date / time	
pH	7.06	<u>T8</u>	1	11/27/2023 14:49	WG2177546

Sample Narrative:

L1680471-03 WG2177546: 7.06 at 19.2C

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Chloride	5.85		1.00	1	12/01/2023 00:54	WG2180080
Fluoride	ND		0.150	1	12/01/2023 00:54	WG2180080
Sulfate	80.1		5.00	1	12/01/2023 00:54	WG2180080

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	ND		0.200	1	11/30/2023 17:05	WG2176334
Lithium	0.0493		0.0150	1	11/30/2023 17:05	WG2176334

, , ,						
	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Barium	0.0866		0.00200	1	12/01/2023 14:23	WG2179561
Calcium	56.9		1.00	1	11/30/2023 16:01	WG2179561
Magnesium	11.6		1.00	1	11/30/2023 16:01	WG2179561
Sodium	44.1		2.00	1	11/30/2023 16:01	WG2179561
Strontium	1.32		0.0100	1	12/01/2023 14:23	WG2179561

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	445		10.0	1	11/24/2023 19:03	WG2177009

Wet Chemistry by Method 2320 B-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Alkalinity	329		20.0	1	11/27/2023 15:55	WG2177910

Sample Narrative:

L1680471-04 WG2177910: Endpoint pH 4.5 Headspace

Wet Chemistry by Method 9040C

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	Su			date / time	
pH	7.47	<u>T8</u>	1	11/27/2023 14:49	<u>WG2177546</u>

Sample Narrative:

L1680471-04 WG2177546: 7.47 at 19.3C

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Chloride	8.22		1.00	1	12/01/2023 01:07	WG2180080
Fluoride	ND		0.150	1	12/01/2023 01:07	WG2180080
Sulfate	25.7		5.00	1	12/01/2023 01:07	WG2180080

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Boron	0.275		0.200	1	11/30/2023 17:07	WG2176334
Lithium	0.0437		0.0150	1	11/30/2023 17:07	WG2176334

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Barium	0.134		0.00200	1	12/01/2023 14:27	WG2179561
Calcium	67.2		1.00	1	11/30/2023 16:05	WG2179561
Magnesium	14.0		1.00	1	11/30/2023 16:05	WG2179561
Sodium	47.1		2.00	1	11/30/2023 16:05	WG2179561
Strontium	1.54		0.0100	1	12/01/2023 14:27	WG2179561

1680471

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	504		10.0	1	11/24/2023 19:03	WG2177009

Wet Chemistry by Method 2320 B-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Alkalinity	306		20.0	1	11/28/2023 09:55	WG2177912

Sample Narrative:

L1680471-05 WG2177912: Endpoint pH 4.5 Headspace

Wet Chemistry by Method 9040C

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	su			date / time	
рН	7.18	<u>T8</u>	1	11/27/2023 14:49	<u>WG2177546</u>

Sample Narrative:

L1680471-05 WG2177546: 7.18 at 19.2C

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Chloride	8.23		1.00	1	12/01/2023 01:32	WG2180080
Fluoride	ND		0.150	1	12/01/2023 01:32	WG2180080
Sulfate	151		5.00	1	12/01/2023 01:32	WG2180080

⁹Sc

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Boron	0.291		0.200	1	11/30/2023 17:10	WG2176334
Lithium	0.107		0.0150	1	11/30/2023 17:10	WG2176334

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Barium	0.0383		0.0100	5	12/01/2023 14:30	WG2179561
Calcium	91.0		1.00	1	11/30/2023 16:08	WG2179561
Magnesium	21.4		1.00	1	11/30/2023 16:08	WG2179561
Sodium	51.2		2.00	1	11/30/2023 16:08	WG2179561
Strontium	2.09		0.0500	5	12/01/2023 14:30	WG2179561

Collected date/time: 11/17/23 15:15

SAMPLE RESULTS - 06

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		
Dissolved Solids	ND		10.0	1	11/24/2023 19:03	WG2177009	

Wet Chemistry by Method 2320 B-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Alkalinity	ND		20.0	1	11/28/2023 10:00	WG2177912

Ss

Sample Narrative:

L1680471-06 WG2177912: Endpoint pH 4.5 Headspace

Wet Chemistry by Method 9040C

	Result	Qualifier	Dilution	Analysis Batch	
Analyte	su			date / time	
рН	4.19	<u>T8</u>	1	11/28/2023 12:30	<u>WG2178460</u>

Sample Narrative:

L1680471-06 WG2178460: 4.19 at 18C

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Chloride	ND		1.00	1	12/01/2023 02:23	WG2180080
Fluoride	ND		0.150	1	12/01/2023 02:23	WG2180080
Sulfate	ND		5.00	1	12/01/2023 02:23	WG2180080

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	ND		0.200	1	11/30/2023 17:18	WG2176334
Lithium	ND		0.0150	1	11/30/2023 17:18	WG2176334

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Barium	ND		0.00200	1	11/30/2023 16:18	WG2179561
Calcium	ND		1.00	1	11/30/2023 16:18	WG2179561
Magnesium	ND		1.00	1	11/30/2023 16:18	WG2179561
Sodium	ND		2.00	1	11/30/2023 16:18	WG2179561
Strontium	ND		0.0100	1	11/30/2023 16:18	WG2179561

SAMPLE RESULTS - 07

Collected date/time: 11/17/23 15:15

L1680471

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	ND		10.0	1	11/24/2023 19:03	WG2177009

Wet Chemistry by Method 2320 B-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Alkalinity	ND		20.0	1	11/28/2023 10:08	WG2177912

Sample Narrative:

L1680471-07 WG2177912: Endpoint pH 4.5 Headspace

Cn

Wet Chemistry by Method 9040C

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	su			date / time	
рН	5.40	<u>T8</u>	1	11/28/2023 12:30	<u>WG2178460</u>

Sample Narrative:

L1680471-07 WG2178460: 5.4 at 18.2C

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Chloride	ND	<u>P1</u>	1.00	1	12/04/2023 14:30	WG2180082
Fluoride	ND		0.150	1	12/04/2023 14:30	WG2180082
Sulfate	ND		5.00	1	12/04/2023 14:30	WG2180082

⁹Sc

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	ND		0.200	1	11/30/2023 17:21	WG2176334
Lithium	ND		0.0150	1	11/30/2023 17:21	WG2176334

, , ,						
	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Barium	ND		0.00200	1	11/30/2023 16:22	WG2179561
Calcium	ND		1.00	1	11/30/2023 16:22	WG2179561
Magnesium	ND		1.00	1	11/30/2023 16:22	WG2179561
Sodium	ND		2.00	1	11/30/2023 16:22	WG2179561
Strontium	ND		0.0100	1	11/30/2023 16:22	WG2179561

SAMPLE RESULTS - 08

Collected date/time: 11/17/23 15:15

1680471

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	ND		10.0	1	11/24/2023 19:03	WG2177009

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Alkalinity	ND		20.0	1	11/28/2023 10:12	WG2177912

Sample Narrative:

L1680471-08 WG2177912: Endpoint pH 4.5 Headspace

Wet Chemistry by Method 9040C

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	Su			date / time	
рН	5.48	<u>T8</u>	1	11/28/2023 12:30	<u>WG2178460</u>

Sample Narrative:

L1680471-08 WG2178460: 5.48 at 18.5C

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l	1	mg/l		date / time	
Chloride	ND	•	1.00	1	12/04/2023 15:25	WG2180082
Fluoride	ND		0.150	1	12/04/2023 15:25	WG2180082
Sulfate	ND	!	5.00	1	12/04/2023 15:25	WG2180082

⁹Sc

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	ND		0.200	1	11/30/2023 17:24	WG2176334
Lithium	ND		0.0150	1	11/30/2023 17:24	WG2176334

Metals (ICPMS) by Method 6020

, ,						
	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Barium	ND		0.00200	1	11/30/2023 16:25	WG2179561
Calcium	ND		1.00	1	11/30/2023 16:25	WG2179561
Magnesium	ND		1.00	1	11/30/2023 16:25	WG2179561
Sodium	ND		2.00	1	11/30/2023 16:25	WG2179561
Strontium	ND		0.0100	1	11/30/2023 16:25	WG2179561

14 of 41

SAMPLE RESULTS - 09

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	295		10.0	1	11/24/2023 19:03	WG2177009

Wet Chemistry by Method 2320 B-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Alkalinity	276		20.0	1	11/28/2023 10:43	WG2177912

Sample Narrative:

L1680471-09 WG2177912: Endpoint pH 4.5 Headspace

Wet Chemistry by Method 9040C

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	su			date / time	
pH	7.57	<u>T8</u>	1	11/28/2023 12:30	<u>WG2178460</u>

Sample Narrative:

L1680471-09 WG2178460: 7.57 at 18.2C

Sc

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Chloride	ND		10.0	10	12/06/2023 00:59	WG2183484
Fluoride	ND		1.50	10	12/07/2023 00:26	WG2183941
Sulfate	ND		50.0	10	12/07/2023 00:26	WG2183941

Sample Narrative:

L1680471-09 WG2183484: Dilution due to matrix.

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	0.286		0.200	1	11/30/2023 17:27	WG2176334
Lithium	0.0373		0.0150	1	11/30/2023 17:27	WG2176334

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Barium	0.0871		0.00200	1	12/01/2023 14:33	WG2179561
Calcium	41.1		1.00	1	11/30/2023 16:29	WG2179561
Magnesium	8.57		1.00	1	11/30/2023 16:29	WG2179561
Sodium	50.5		2.00	1	11/30/2023 16:29	WG2179561
Strontium	0.985		0.0100	1	12/01/2023 14:33	WG2179561

SAMPLE RESULTS - 10

Gravimetric Analysis by Method 2540 C-2011

Collected date/time: 11/17/23 15:15

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		
Dissolved Solids	ND		10.0	1	11/24/2023 19:03	WG2177009	

Wet Chemistry by Method 2320 B-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Alkalinity	ND		20.0	1	11/28/2023 10:48	WG2177912

Ss

Sample Narrative:

L1680471-10 WG2177912: Endpoint pH 4.5 Headspace

Wet Chemistry by Method 9040C

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	su			date / time	
рН	5.58	<u>T8</u>	1	11/28/2023 12:30	<u>WG2178460</u>

Sample Narrative:

L1680471-10 WG2178460: 5.58 at 18.4C

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Chloride	ND		1.00	1	12/06/2023 01:27	WG2183484
Fluoride	ND		0.150	1	12/07/2023 00:58	WG2183941
Sulfate	ND		5.00	1	12/07/2023 00:58	WG2183941

Sc

Mercury by Method 7470A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Mercury	ND		0.000200	1	11/28/2023 22:44	WG2176224

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Boron	ND		0.200	1	11/30/2023 15:52	WG2176334
Lithium	ND		0.0150	1	11/30/2023 15:52	WG2176334

metale (i.e. me) by metaled edge									
	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>			
Analyte	mg/l		mg/l		date / time				
Barium	ND		0.00200	1	11/30/2023 14:45	WG2176349			
Calcium	ND		1.00	1	11/30/2023 14:45	WG2176349			
Magnesium	ND		1.00	1	11/30/2023 14:45	WG2176349			
Sodium	ND	<u>J4</u>	2.00	1	11/30/2023 14:45	WG2176349			
Strontium	ND	J4	0.0100	1	11/30/2023 14:45	WG2176349			

MW-106D

SAMPLE RESULTS - 11

Collected date/time: 1/1/17/23 17:10

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	185		10.0	1	11/24/2023 19:03	WG2177009

Wet Chemistry by Method 2320 B-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Alkalinity	185		20.0	1	11/28/2023 10:51	WG2177912

Sample Narrative:

L1680471-11 WG2177912: Endpoint pH 4.5 Headspace

Wet Chemistry by Method 9040C

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	su			date / time	
pH	9.99	<u>T8</u>	1	11/28/2023 12:30	<u>WG2178460</u>

Sample Narrative:

L1680471-11 WG2178460: 9.99 at 18.4C

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Chloride	ND		10.0	10	12/06/2023 01:54	WG2183484
Fluoride	ND		1.50	10	12/07/2023 01:29	WG2183941
Sulfate	ND		50.0	10	12/07/2023 01:29	WG2183941

Sample Narrative:

L1680471-11 WG2183484: Dilution due to matrix.

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	0.249		0.200	1	11/30/2023 17:30	WG2176334
Lithium	0.206		0.0150	1	11/30/2023 17:30	WG2176334

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Barium	0.142		0.0100	5	12/01/2023 14:37	WG2179561
Calcium	37.1		1.00	1	11/30/2023 16:32	WG2179561
Magnesium	3.92		1.00	1	11/30/2023 16:32	WG2179561
Sodium	49.4		2.00	1	11/30/2023 16:32	WG2179561
Strontium	3.06		0.0500	5	12/01/2023 14:37	WG2179561

QUALITY CONTROL SUMMARY

Gravimetric Analysis by Method 2540 C-2011

L1680471-01,02,03,04,05,06,07,08,09,10,11

Method Blank (MB)

(MB) R4005316-1 11/24/23 19:03

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Dissolved Solids	U		10.0	10.0

³Ss

L1679203-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1679203-01 11/24/23 19:03 • (DUP) R4005316-3 11/24/23 19:03

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Dissolved Solids	124	125	1	0.803		5

[†]Cn

⁶Qc

L1679529-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1679529-01 11/24/23 19:03 • (DUP) R4005316-4 11/24/23 19:03

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Dissolved Solids	419	438	1	4.43		5

Laboratory Control Sample (LCS)

(LCS) R4005316-2 11/24/23 19:03

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Dissolved Solids	8800	8540	97.0	85.0-115	

QUALITY CONTROL SUMMARY

L1680471-01,02,03,04

Wet Chemistry by Method 2320 B-2011

Method Blank (MB)

(MB) R4005035-2 11/27/23 13:53

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Alkalinity	U		8.45	20.0

Sample Narrative:

BLANK: Endpoint pH 4.5

L1680243-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1680243-01 11/27/23 14:10 • (DUP) R4005035-3 11/27/23 14:14

(03) 21000243 01 11/27/20	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Alkalinity	273	275	1	0.760		20

⁶Qc

Sample Narrative:

OS: Endpoint pH 4.5 Headspace

DUP: Endpoint pH 4.5

201 : 211aponit pri 1.

L1680471-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1680471-03 11/27/23 15:47 • (DUP) R4005035-4 11/27/23 15:51

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Alkalinity	218	220	1	1.08		20

Sample Narrative:

OS: Endpoint pH 4.5 Headspace

DUP: Endpoint pH 4.5

Laboratory Control Sample (LCS)

(LCS) R4005035-1 11/27/23 13:49

(LC3) R4003033-1 11/27/2	23 13.49				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Alkalinity	100	104	104	90 0-110	

Sample Narrative:

LCS: Endpoint pH 4.5

QUALITY CONTROL SUMMARY

L1680471-05,06,07,08,09,10,11

Method Blank (MB)

Wet Chemistry by Method 2320 B-2011

(MB) R4005182-2 11/28/23 08:47

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Alkalinity	U		8.45	20.0

²Tc

Sample Narrative:

BLANK: Endpoint pH 4.5

L1679713-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1679713-02 11/28/23 09:31 • (DUP) R4005182-4 11/28/23 09:37

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	UP RPD mits	
Analyte	mg/l	mg/l		%			
Alkalinity	195	195	1	0.0281		0	

Sample Narrative:

OS: Endpoint pH 4.5 Headspace

DUP: Endpoint pH 4.5

⁹Sc

L1680793-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1680793-01 11/28/23 11:36 • (DUP) R4005182-6 11/28/23 11:42

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Alkalinity	328	325	1	1.17		20

Sample Narrative:

OS: Endpoint pH 4.5 Headspace

DUP: Endpoint pH 4.5

Laboratory Control Sample (LCS)

(LCS) R4005182-1 11/28/23 08:43

(LCS) R4005182-1 11/28/2	23 08:43				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Alkalinity	100	105	105	90.0-110	

Sample Narrative:

LCS: Endpoint pH 4.5

QUALITY CONTROL SUMMARY

Wet Chemistry by Method 9040C

L1680471-01,02,03,04,05

L1679741-05 Original Sample (OS) • Duplicate (DUP)

(OS) L1679741-05 11/27/23 14:49 • (DUP) R4004680-2 11/27/23 14:49

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	Su	SU		%		%
рН	3.95	3.92	1	0.762		1

Sample Narrative:

OS: 3.95 at 19.6C DUP: 3.92 at 19.4C

Ss

L1680471-05 Original Sample (OS) • Duplicate (DUP)

(OS) L1680471-05 11/27/23 14:49 • (DUP) R4004680-3 11/27/23 14:49

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	Su	SU		%		%
рН	7.18	7.20	1	0.278		1

⁸Al

Sample Narrative:

OS: 7.18 at 19.2C DUP: 7.2 at 19.2C

Laboratory Control Sample (LCS)

(LCS) R4004680-1 11/27/23 14:49

,	Spike Amount	LCS Result	LCS Rec.	Rec. Limits
Analyte	Su	SU	%	%
На	10.0	10.0	100	99.0-101

Sample Narrative:

LCS: 10.02 at 20C

QUALITY CONTROL SUMMARY

Wet Chemistry by Method 9040C

L1680471-06,07,08,09,10,11

L1680471-06 Original Sample (OS) • Duplicate (DUP)

(OS) L1680471-06 11/28/23 12:30 • (DUP) R4005166-2 11/28/23 12:30

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	su	SU		%		%
рН	4.19	4.16	1	0.719		1

Sample Narrative:

OS: 4.19 at 18C DUP: 4.16 at 18.2C

Ss

L1681378-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1681378-01 11/28/23 12:30 • (DUP) R4005166-3 11/28/23 12:30

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	SU	SU		%		%
рН	6.80	6.83	1	0.440		1

⁸Al

Sample Narrative:

OS: 6.8 at 18.7C DUP: 6.83 at 18.8C

Laboratory Control Sample (LCS)

(LCS) R4005166-1 11/28/23 12:30

(,	Spike Amount	LCS Result	LCS Rec.	Rec. Limits
Analyte	SU	SU	%	%
На	10.0	10.0	100	99.0-101

Sample Narrative:

LCS: 10.03 at 18.8C

QUALITY CONTROL SUMMARY

L1680471-01,02,03,04,05,06

Wet Chemistry by Method 9056A

Method Blank (MB)

(MB) R4006895-1	11/30/23 09:53
-----------------	----------------

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Chloride	U		0.379	1.00
Fluoride	U		0.0640	0.150
Sulfate	U		0.594	5.00

⁴Cn

L1680300-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1680300-01 11/30/23 19:10 • (DUP) R4006895-3 11/30/23 19:23

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Chloride	23.2	23.3	1	0.311		15
Fluoride	0.255	0.229	1	10.9		15
Sulfate	78.7	79.0	1	0.363		15

L1680471-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1680471-01 11/30/23 23:50 • (DUP) R4006895-6 12/01/23 00:03

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Chloride	7.38	7.16	1	3.08		15
Fluoride	ND	ND	1	0.000		15
Sulfate	47.7	46.9	1	1.67		15

9

Laboratory Control Sample (LCS)

(LCS) R4006895-2 11/30/23 10:06

(LCS) R4006895-2 1	1/30/23 10:06				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Chloride	40.0	39.3	98.3	80.0-120	
Fluoride	8.00	8.23	103	80.0-120	
Sulfate	40.0	38.8	96.9	80.0-120	

QUALITY CONTROL SUMMARY

Wet Chemistry by Method 9056A

L1680471-01,02,03,04,05,06

L1680300-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1680300-01 11/30/23 19:10 • (MS) R4006895-4 11/30/23 19:36 • (MSD) R4006895-5 11/30/23 19:48

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Chloride	40.0	23.2	58.9	59.0	89.2	89.5	1	80.0-120			0.170	15
Fluoride	8.00	0.255	9.15	8.58	111	104	1	80.0-120			6.49	15
Sulfato	40.0	79.7	104	104	62.8	62.1	1	90 0 120	16	16	U 133	15

L1680471-01 Original Sample (OS) • Matrix Spike (MS)

(OS) L1680471-01 11/30/23 23:50 • (MS) R4006895-7 12/01/23 00:16

(00) 2:000 :: 0: 1::00/20	22.00 (, 0 ,, 20 000				
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	mg/l	mg/l	mg/l	%		%	
Chloride	40.0	7.38	45.6	95.6	1	80.0-120	
Fluoride	8.00	ND	8.19	102	1	80.0-120	
Sulfate	40.0	47.7	78.7	77.4	1	80.0-120	<u>J6</u>

QUALITY CONTROL SUMMARY

L1680471-07,08

Wet Chemistry by Method 9056A

Method Blank (MB)

(IVID)	R4008278-1	12/04/23	11.55
			14D D

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Chloride	U		0.379	1.00
Fluoride	U		0.0640	0.150
Sulfate	U		0.594	5.00

L1680471-07 Original Sample (OS) • Duplicate (DUP)

(OS) L1680471-07 12/04/23 14:30 • (DUP) R4008278-3 12/04/23 14:44

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Chloride	ND	ND	1	200	<u>P1</u>	15
Fluoride	ND	ND	1	0.000		15
Sulfate	ND	ND	1	0.000		15

L1680861-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1680861-02 12/04/23 20:41 • (DUP) R4008278-6 12/04/23 20:54

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Chloride	3.01	3.04	1	0.787		15
Fluoride	ND	ND	1	0.000		15
Sulfate	ND	ND	1	0.000		15

Sc

Laboratory Control Sample (LCS)

(LCS) R4008278-2 12/0	04/23 12:06				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Chloride	40.0	39.2	98.0	80.0-120	
Fluoride	8.00	8.01	100	80.0-120	
Sulfate	40.0	39.0	97.4	80.0-120	

QUALITY CONTROL SUMMARY

Wet Chemistry by Method 9056A

L1680471-07.08

L1680471-07 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1680471-07 12/04/23 14:30 • (MS) R4008278-4 12/04/23 14:57 • (MSD) R4008278-5 12/04/23 15:11

,	, ,			'								
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Chloride	40.0	ND	39.7	40.1	98.2	99.2	1	80.0-120			0.971	15
Fluoride	8.00	ND	8.01	8.22	100	103	1	80.0-120			2.70	15
Sulfate	40.0	ND	39.6	39.9	99.0	99.7	1	80.0-120			0.689	15

Ср

L1680861-02 Original Sample (OS) • Matrix Spike (MS)

(OS) L1680861-02 12/04/23 20:41 • (MS) R4008278-7 12/04/23 21:08

(/							
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	mg/l	mg/l	mg/l	%		%	
Chloride	40.0	3.01	43.1	100	1	80.0-120	
Fluoride	8.00	ND	8.27	103	1	80.0-120	
Sulfate	40.0	ND	40.3	101	1	80.0-120	

QUALITY CONTROL SUMMARY

L1680471-09,10,11

Wet Chemistry by Method 9056A

Method Blank (MB)

(MB) R4009317-1 12/06/23 00:32

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Chloride	U		0.379	1.00

³Ss

L1683282-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1683282-01 12/06/23 02:21 • (DUP) R4009317-3 12/06/23 02:35

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Chloride	2.32	2.31	1	0.324		15

⁶Qc

L1683795-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1683795-02 12/06/23 07:32 • (DUP) R4009317-6 12/06/23 07:45

(O3) L1003/95-02 12/06/2	23 U7.32 • (DUF	7) R4009317-6	12/06/23	07.45		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Chloride	59.2	59.1	1	0.260		15

Laboratory Control Sample (LCS)

(LCS) R4009317-2 12/06/23 00:45

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Chloride	40.0	39.7	99.2	80.0-120	

L1683282-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1683282-01 12/06/23 02:21 • (MS) R4009317-4 12/06/23 03:16 • (MSD) R4009317-5 12/06/23 03:30

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%	
Chloride	40.0	2.32	42.2	42.3	99.8	99.9	1	80.0-120			0.129	15	

L1683795-02 Original Sample (OS) • Matrix Spike (MS)

(OS) L1683795-02 12/06/23 07:32 • (MS) R4009317-7 12/06/23 07:59

	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	mg/l	mg/l	mg/l	%		%	
Chloride	40.0	59.2	87.5	70.6	1	80.0-120	<u>J6</u>

Fluoride

Sulfate

QUALITY CONTROL SUMMARY

L1680471-09,10,11

Wet Chemistry by Method 9056A Method Blank (MB)

(MB) R4010095-1 12/06/23 15:02										
	MB Result	MB Qualifier	MB MDL							
Analyte	mg/l		mg/l							

U

0.632

²Tc

Ss

L1680203-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1680203-03 12/06/23 18:36 • (DUP) R4010095-3 12/06/23 18:52

· /	` '					
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Fluoride	0.215	0.248	1	14.2		15
Sulfate	16.3	16.8	1	2.82		15

MB RDL mg/l

0.150

5.00

0.0640

0.594

[']Gl

L1680380-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1680380-03 12/06/23 23:22 • (DUP) R4010095-6 12/06/23 23:38

,	,	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
A	nalyte	mg/l	mg/l		%		%
FI	uoride	ND	ND	1	8.61		15
Sı	ılfate	82.3	82.2	1	0.00620		15

9 5 6

⁹Sc

Laboratory Control Sample (LCS)

(LCS) R4010095-2 12/06/23 15:18

(LC3) R4010093-2 12/0	00/23 13.16				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Fluoride	8.00	8.39	105	80.0-120	
Sulfate	40.0	40.9	102	80.0-120	

L1680203-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1680203-03 12/06/23 18:36 • (MS) R4010095-4 12/06/23 19:08 • (MSD) R4010095-5 12/06/23 19:23

(03) [1000203-03 12/00/.	, ,	Original Result		MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Fluoride	8.00	0.215	8.40	8.42	102	103	1	80.0-120			0.306	15
Sulfate	40.0	16.3	54.1	54.1	94.5	94.5	1	80.0-120			0.0259	15

QUALITY CONTROL SUMMARY

L1680471-09,10,11

Wet Chemistry by Method 9056A

L1680380-03 Original Sample (OS) • Matrix Spike (MS)

(OS) L1680380-03 12/06/23 23:22 • (MS) R4010095-7 12/06/23 23:54

(00) 21000000 00 12/00/2	55) 21000000 00 12100/20 20.22 (110) 111010000 7 12/00/20 20.01												
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier						
Analyte	mg/l	mg/l	mg/l	%		%							
Fluoride	8.00	ND	8.13	99.9	1	80.0-120							
Sulfate	40.0	82.3	106	59.3	1	80.0-120	<u>J6</u>						

1145-21-080

QUALITY CONTROL SUMMARY

L1680471-10

Mercury by Method 7470A

Method Blank (MB)

(MB) R4005530-1 11	(MB) R4005530-1 11/28/23 20:31									
	MB Result	MB Qualifier	MB MDL	MB RDL						
Analyte	mg/l		mg/l	mg/l						
Mercury	U		0.000100	0.000200						

Laboratory Control Sample (LCS)

(LCS) R4005530-2 11/28/23 20:34

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Mercury	0.00300	0.00289	96.4	80.0-120	

L1680508-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1680508-03 11/28/23 20:36 • (MS) R4005530-3 11/28/23 21:48 • (MSD) R4005530-4 11/28/23 21:51

, ,	Spike Amount	Original Result		MSD Result	MS Rec.	MSD Rec.	Dilutio	n Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Mercury	0.00300	ND	0.00263	0.00270	87.6	89.9	1	75.0-125			2.69	20

QUALITY CONTROL SUMMARY

L1680471-01,02,03,04,05,06,07,08,09,10,11

Method Blank (MB)

Metals (ICP) by Method 6010B

(MB) R4006703-1 11/30/23	3 15:46			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Boron	U		0.0200	0.200
Lithium	U		0.00485	0.0150

Laboratory Control Sample (LCS)

(LCS) R4006703-2 11/30/2	23 15:49				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Boron	1.00	0.991	99.1	80.0-120	
Lithium	1.00	1.00	100	90 0 120	

L1680471-10 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(03) 11000471-10 11/30/2	23 13.32 • (IVIS) K	4000703-4 11/	30/23 13.37 •	(INISD) K400071	J3-3 11/30/23	13.39							
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%	
Boron	1.00	ND	0.983	0.964	98.3	96.4	1	75.0-125			2.00	20	
Lithium	1.00	ND	1.01	0.994	101	99.4	1	75.0-125			1.21	20	

Strontium

QUALITY CONTROL SUMMARY

L1680471-10

Method Blank (MB)

Metals (ICPMS) by Method 6020

(MB) R4006905-1 11/3	30/23 12:43			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Barium	U		0.000381	0.00200
Calcium	U		0.0936	1.00
Magnesium	U		0.0735	1.00
Sodium	U		0.376	2.00

⁵Sr

Laboratory Control Sample (LCS)

0.000917

(LCS) R4006905-2	11/30/23 12:47				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/I	mg/l	%	%	
Barium	0.0500	0.0486	97.2	80.0-120	
Calcium	5.00	5.50	110	80.0-120	
Magnesium	5.00	5.31	106	80.0-120	
Sodium	5.00	6.08	122	80.0-120	<u>J4</u>
Strontium	0.0500	0.0676	135	80.0-120	<u>J4</u>

L1680274-09 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

0.000590

0.0100

(OS) L1680274-09 11/30/23 12:50 • (MS) R4006905-4 11/30/23 13:01 • (MSD) R4006905-5 11/30/23 13:04

\ <i>'</i>	٠,			'								
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Barium	0.0500	0.0177	0.0683	0.0663	101	97.1	1	75.0-125			3.06	20
Calcium	5.00	129	133	131	76.0	51.6	1	75.0-125		<u>∨</u>	0.924	20
Magnesium	5.00	56.4	61.5	59.5	102	61.7	1	75.0-125		$\underline{\vee}$	3.31	20
Sodium	5.00	201	208	202	151	35.3	1	75.0-125	$\underline{\vee}$	<u>∨</u>	2.82	20
Strontium	0.0500	1.92	1.98	1.96	130	82.0	1	75.0-125	V		1.21	20

QUALITY CONTROL SUMMARY

L1680471-01,02,03,04,05,06,07,08,09,11

Method Blank (MB)

(MB) R4006825-1 11/30/23 15:00

Metals (ICPMS) by Method 6020

(MB) R4006825-1 11/	30/23 15:00			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Barium	U		0.000381	0.00200
Calcium	U		0.0936	1.00
Magnesium	U		0.0735	1.00
Sodium	U		0.376	2.00
Strontium	U		0.000590	0.0100

Laboratory Control Sample (LCS)

(LCS) R4006825-2	11/30/23 15:04				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Barium	0.0500	0.0499	99.7	80.0-120	
Calcium	5.00	5.15	103	80.0-120	
Magnesium	5.00	5.11	102	80.0-120	
Sodium	5.00	5.13	103	80.0-120	
Strontium	0.0500	0.0498	99.7	80.0-120	

L1679636-11 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1679636-11 11/30/23 15:07 • (MS) R4006825-4 11/30/23 15:14 • (MSD) R4006825-5 11/30/23 15:17

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Barium	0.0500	0.234	0.286	0.285	103	102	1	75.0-125			0.153	20
Calcium	5.00	104	110	109	121	105	1	75.0-125			0.697	20
Magnesium	5.00	38.2	42.0	43.1	75.9	97.2	1	75.0-125			2.51	20
Sodium	5.00	12.5	17.5	17.6	101	102	1	75.0-125			0.0767	20
Strontium	0.0500	0.439	0.495	0.488	113	98.4	1	75.0-125			1.43	20

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appreviations and	d Definitions
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Description

J	The identification of the analyte is acceptable; the reported value is an estimate.
J4	The associated batch QC was outside the established quality control range for accuracy.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.
P1	RPD value not applicable for sample concentrations less than 5 times the reporting limit.
T8	Sample(s) received past/too close to holding time expiration.
V	The sample concentration is too high to evaluate accurate spike recoveries.

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
Iowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA - ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

	c & Associates - Bryant, AR									Ar	nalysis / Co	ntainer / F	reservative			Chain of Custody	Page of
GBMc & Associates - Br	yant, AR		219 Brov	s Payable			Pres Chk									- Pa	CC°
Little Rock, AR 72022			bi yaiit, i	AN 72022							4			1			
Report to: Jonathan Brown			Email To: Jonathan.l	Brown@Allia	anceTG.	com;Jhouse	@trcc				Imen					12065 Lebanon Rd Mour Submitting a sample via t	
Project Description: Entergy - White Bluff		City/State Collected:				Please Ci			res		4 Hadre					Pace Terms and Condition https://info.pacelabs.com terms.pdf	
Phone: 501-847-7077	Client Project 1145-21-0			Lab Project		TERGYW	В		E-NoP		ce Ar					SDG# / 6	80471
Collected by (print):	Site/Facility I			P.O. #			1	HNO3	mIHDF	res	5) 50					Table # Acctnum: GBN	1CBAR
Collected by (signature): Immediately Packed on Ice N Y				Results	Needed	No.	Ca 250mlHDPE-HNO3	SO4, PH 250mIHDPE-NoPres	TDS 1L-HDPE NoPres	2 Chen					Prelogin: P103 PM: 829 - Britte PB: Shipped Via: F6	32739 nie L Boyd	
Sample ID	Comp/Grab	Matrix *	Depth	Dat	е	Time	Cntrs	B, Ca	CI, F,	TDS.	200					p.H.	Sample # (lab only)
MW-101S	G	GW		11.17	.23	1215	15		-	4	-					5,41	-01
MW-102S		GW											125				
MW-103S		GW											State of				
MW-104S		GW															
MW-105S		GW															
MW-106S	6	GW		11.17.	23	1605	5	-	-	-	-		100			3.72	-07
MW-1105		GW															
MW-111S		GW											100			1 112	
MW-101D	6	GW		11.17	.13	1320	5	-	-	-	-					6.42	-03
MW-102D	G	GW		11.17	7.23	1110	5	-	-	-	-					6.93	-07
Matrix: SS - Soil AIR - Air F - Filter SW - Groundwater WW - WasteWater Remarks: Pleas 6 Remarks: Pleas 6 Remarks: Pleas 6 Remarks: Pleas 6						ded	en	15001	(35	5+	pH Flow		Temp Other	-	COC Seal COC Sign Bottles Correct	Sample Receipt C 1 Present/Intact ned/Accurate: arrive intact: bottles used: ent volume sent:	: _NP _N N
	OT - Other UPSFedExCou			ourierTrac							Trip Blan	k Received	d: Yes/No	,	Preserv	If Application Headspace: vation Correct/Cleen <0.5 mR/hr:	YN
Relinquished by: (Signature) Date: 11.			3 1	ne: 417 me:	Received by: (Signa						Temp:		HCL / M TBR Bottles Rece	leoH eived:		vation required by L	ogin: Date/Time
Relinquished by : (Signature) Date:								ature)			Date: Time:				Hold:		Condition
Relinquished by : (Signature)			Time: Received for lab to				ALC: YOUR DOOR TO ME		rep		Date: Time: Hold:						NCF / OK

Company Name/Address:			Billing Info	ormation:			1				Analysis / C	ontainer / I	reservative		Chain of Custon	hi Dana of
GBMc & Associates - 219 Brown Lane Little Rock, AR 72022	Bryant, AR		Account 219 Brow Bryant,	ts Payab wn Ln.			Pres Chk				1	on aller 7 F	TEXPLOATIVE		_ (P	Page of OCC LE ADVANCING SCIENCE
Report to: Jonathan Brown			Email To: Jonathan.I	Brown@A	IllianceT	G.com;Jhouse	@trcc				adun					ULIET, TN Jount Juliet, TN 37122
Project Description: Entergy - White Bluff		City/State Collected:			<u>~·</u>	Please Ci	ircle:		sa		2				Submitting a sample constitutes acknowle Pace Terms and Cond	via this chain of custody dgment and acceptance of the
Phone: 501-847-7077	Client Project 1145-21-0			CBMC		NTERGYWI	3		-NoPr		See)				SDG #	83471
Collected by (print): SLL/KRS	Site/Facility CADL - CC			P.O. #				HNO3	250mlHDPE-NoPres	Se	540				Table #	
Collected by (signature):	Same I	Lab MUST Be	Day	Quote	#		6	250mIHDPE-HNO3		11-HDPE NoPres	13				Acctnum: GB	98831
Immediately Packed on Ice N Y	— Next D		(Rad Only) y (Rad Only)	Dat	te Results Needed		No.	250ml	SO4, PH	-HDPE	2				Prelogin: P10 PM: 829 - Brit PB: O a	tnie L Boyd
Sample ID	Matrix *	Depth	Da	ate	Time	Cntrs	B, Ca	Cl, F, S	TDS 1	0)				SECURIOR ASSESSED ASSESSED	edEX Ground Sample # (lab only)	
MW-114D		GW						ш	0	-	1				pt)	
MW-115D MW-118D		GW														
FIELD BLANK 1		GW		11.17		0930	5	-	-	-	-				6.55	-05
DUPLICATE 1		GW		11.17	.23	1515	5		-		- 100					-06
FIELD BLANK 2		GW		11.17	.23	1515	5		-	-	-					-02
DUPLICATE 2		GW			0,7											-07
DUPLICATE 3		GW		11.17	.23	1515	5	-	-	-	-			10		-08
	6	GW		11.17	12	1110	-						,		6.00	00
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay	Remarks:			1 11.11	. 03	1435	5				pH	Tem		COC Seal	G.92 Sample Receipt Cl Present/Intact ned/Accurate: arrive intact:	-09 necklist NP Y N N
VW - WasteWater VW - Drinking Water OT - Other					Trackin	ıg#					Flow	Oth	er	Correct Sufficie	bottles used: ent volume sent: If Applicab Headspace:	le v N
Relinquished by: (Signature) Date: 11-20			Time:		Receive	ed by: (Signati	ure)		77		Trip Blank R	eceived: \	es No HCL / MeoH TBR	Preserva	ation Correct/Ch een <0.5 mR/hr:	ecked: Y N
Relinquished by : (Signature) Date:					Receive	ed by: (Signati	ure)				Temp:	°C Bot	tles Received:	If preserve	ation required by Lo	gin: Date/Time
Relinquished by : (Signature) Date:			Time:		Received for lab by: (Date:	Tin	ne: 09:00	Hold:		Condition:

9

T.

Company Name/Address:			Billing Info				1			Analysis	Contai	ner / Pr	eservat	ivo		Chaine	of Custody	Dage of
GBMc & Associates - I	Bryant, AR		219 Bro	ts Payable wn Ln. AR 72022		Pres Chk						NOS	3			Citative	Pa	Page of
Little Rock, AR 72022			J. June,	/ 2022					100	65	100	二	HNO	1	1: 3	1	PEOPLE	ADVANCING SCIENCE
Report to: Jonathan Brown	\$ 1		Email To: Jonathan.	Brown@Allian	ceTG.com;Jhou	se@trcc				NoPo	K03	-400 H	-6	m.		12065 Leb		JLIET, TN ant Juliet, TN 37122
Project Description: Entergy - White Bluff		City/State Collected:			Please PT MT	Circle: CT ET		Ses		1	7-	DPE	- Ad	chr		Submitting constitute Pace Term	a sample via s acknowledg s and Condition	this chain of custody ment and acceptance of the
Phone: 501-847-7077	Client Project 1145-21-0			GBMCBAI	R-ENTERGYV	VB		250mIHDPE-NoPres		L HDPE	HOPE	H-77	-HPPE	Attachmen		SDG #	16	8047
Collected by (print):	Site/Facility RECYCLE F			P.O. #			HN03	IHDP	es	25 ml	3	00	11	Sec		Table #		
Collected by (signature):	Same [Lab MUST Be	Day	Quote #			1DPE-		NoPr	0	250	122	128	(Lons)		Templa	m: GBN te: T19 8	8822
Immediately Packed on Ice N Y	Next D		(Rad Only) ay (Rad Only)	Date Re	te Results Needed		250mlHDPE-HNO3	SO4, PH	TDS 1L-HDPE NoPres	uoride	015	226	226	26		PM: 82	P103	ie L Boyd
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	Ca	IL.	05 11	Fluc	Mex	Y.A.	A	00		Shipped	Via: Fe	dEX Ground
DUPLICATE		GW				1	8	C,	F	L	4	2	×	V		Pt)	narks.	Sample # (lab only)
FIELD BLANK	6	GW		11.17.23	1515	9				-				-				10
MW-106D	6	GW		11-17-2		5	_					-	-	_		0.		-10
		GW		11111	11110	13										9,1	8	-11
		GW																
		GW																
						1												
* Matrix:	Remarks:						1000						11 21	-		Samuel Daniel	144 OL-	1011
SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater									pH _ Flow_		Temp			COC Seal COC Sign Bottles	ned/Accurate arrive into	ntact: e: act:	NP Y N	
DW - Drinking Water OT - Other	via: Courier		Tra	king#				12.0		1/2			3	Sufficie	ent volume : If App Headspace	sent: licable	N N	
Relinquished by: (Signature)	ite:	Time:		eived by: (Signa	iture)	1 16	1		Trip Blank	Receive	Н	CL / Me		Preserva	ation Correceen <0.5 mR	ct/Chec	ked: Y N	
Relinquished by : (Signature) Date:			Time:		eived by: (Signa	iture)			1	Temp:	°C		s Receiv		If preserv	ation required	by Logir	n: Date/Time
Relinquished by : (Signature)	Da	ite:	Time:		eived for lab by	1000	eture)			Date:	1/23	Time			Hold:			Condition: NCF / Ox

Jonathan Brown

From:

Sent:

To:

Subject:

Friday, October 20, 2023 2:51 PM Jonathan Brown

Brittnie Boyd

Mark W. Beasley; House, Jason White Bluff Bottle Request

12h08317

Brittnie,

blank water. Thank you. Please send the following bottles for Entergy White Bluff. We also need an extra bottle set or two and plenty of field

W-106	MW-105D	_MW-103D	18	18	MW-1115	W-110	MW-106S	W-10	18	W-1	W-102	MW-101S	CADL - CCR	Duplicate	Field Blank	RP-10	RP-9	RP-8	RP-7	RP-6	RP-5	RP-4	RP-3	RP-2	RP-1	Recycle Ponds	White
< i× i	× ×	i i×	i ×	 ×	i i×	i ×	i ×	i i×	i i× i	 ×	 	i i×	COC 1	×	ı ı ı ı	ı ı ı ı	ı ı ı ı	ı ı ı ı	ı ı ı× ı	i i×	i i i× i	 × 	i i i× i	 × 	 	COC 1	Bluff
× ×	צ×	×	×	×	 × 	 	 	 × 	 ×	 ×	 ×	×	COC 2	×	×	×	×	×	×	×	×	×	×	 ×	×	COC 2	
														×	×	×	×	×	×	×	×	×	×	×	×	App IV	

Duplicate 2	Field Blank 2	Duplicate 1		MW-118D	W-11	W-11	1-11	MW-112D	MW-111D		MW-109D	MW-108D
 ×	 ×	 × 	 × 	 ×	 × 	 ×	 × 	 × 				
×	×	×	 × 	 × 	 ×	 ×	 × 	 ×	 × 	 ×	 ×	

Appendix IV Antimo	COC 2 - lons* Calcium	COC 1 - Appendix Boron,	
Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Cobalt, Fluoride, Lead, Lithium, Mercury, Molybdenum, Selenium, Thallium, Radium 226/228	Calcium, Magnesium, Sodium, Sulfate, Chloride, Boron, Strontium, Lithium, Fluoride, Barium, Alkalinity	Boron, Calcium, Chloride, Fluoride, Sulfate, TDS, pH	

JGBMc NOW Alliance

Jonathan Brown
Managing Consultant
Office: 501-847-7077 | Mobile: 501-920-5894
Address: 219 Brown Lane, Bryant AR, 72022
www.alliancetg.com

												7123 5304 0452	1250 8058 8216		Tracking Numbers
,		op system	Tropics to see	- Programme	gin den er er	fringe de de souvil		Brangs in root of			ode order (A.)				
												3.6 to 23.6	S.0 +0=5.0	11. 4 to -4.4	Tempature

APPENDIX C ALTERNATE SOURCE DEMONSTRATIONS

Alternate Source Demonstration

2nd Half 2022 Sampling Event

Entergy White Bluff Plant Coal Ash Disposal Landfill Redfield, Jefferson County, Arkansas

July 2023

Prepared For Entergy Arkansas, LLC White Bluff Plant 1100 White Bluff Road Redfield, Arkansas 72132

Jason S. House

Senior Project Manager

Executive Summary

Entergy Arkansas, LLC (Entergy) performed the most recent semiannual detection monitoring sampling (2nd Half 2022) in December 2022 for Cells 1 through 4 of the coal ash disposal landfill (CADL) pursuant to the *Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule,* 40 CFR Part 257 (CCR Rule). Cells 1 through 4 of the CADL constitute the coal combustion residuals (CCR) Unit per the CCR Rule. Per 40 CFR 257.94, the samples were analyzed for the Appendix III detection monitoring parameters. Upon receipt of the laboratory analytical results, statistical analysis was performed.

In accordance with the statistical analyses, the following 20 statistically significant increases (SSI) above background concentrations were identified in five monitoring wells in Stratum I and three monitoring wells in Stratum III, based on either increasing trends at 98% confidence levels using Sen's Slope test and/or intrawell prediction limits statistical analyses:

- Calcium and total dissolved solids (TDS) (MW-102S);
- TDS (MW-103S);
- Calcium, fluoride, sulfate and TDS (MW-106S);
- Boron (MW-110S);
- Boron, calcium, fluoride, sulfate, pH and TDS (MW-111S);
- Boron, calcium, and TDS (MW-112D);
- Calcium and TDS (MW-114D); and
- TDS (MW-118D).

The information provided in this report serves as Entergy's alternate source demonstration (ASD) prepared in accordance with 40 CFR 257.94(e)(2) and successfully demonstrates that the SSIs are not due to a release from the CCR Unit to groundwater, but are due to the following:

- Natural groundwater geochemistry conditions such as pH, electrical conductivity (EC), oxidation-reduction potential (ORP) and the naturally occurrence of sulfide minerals;
- Natural variation in groundwater quality;
- Releases from historic fill or portions of the CADL closed before the effective date of the CCR Rule (October 19, 2015); and/or
- Surface water that has come into contact with on-site CCR and has migrated into the subsurface.

Therefore, based on the information provided in this ASD report, Entergy will continue to conduct semiannual detection monitoring for Appendix III constituents in accordance with 40 CFR 257.94 at the certified groundwater monitoring well system (Certified Monitoring Well Network) for the CCR Unit and will continue to implement improvements to stormwater management practices at the CADL.

Table of Contents

Executive	e Summary	ii
Section 1 l	Introduction	1-1
1.1	Background	1-1
	1.1.1 Groundwater Monitoring and Statistical Analysis	
1.2	Purpose	
Section 2 l	Hydrogeology and Geochemistry	2-1
2.1	Site Hydrogeology	2-1
2.2	General Groundwater Quality	
2.3	Groundwater Geochemistry	2-3
	2.3.1 Boron in Groundwater	
	2.3.2 Fluoride in Groundwater	2-4
	2.3.3 Sulfate in Groundwater	2-5
	2.3.4 Calcium in Groundwater	2-5
	2.3.5 TDS in Groundwater	2-6
	2.3.6 pH in Groundwater	2-6
Section 3	Alternate Source Demonstration	3-1
3.1	Calcium at MW-102S	3-3
3.2	TDS at MW-102S	3-3
3.3	TDS at MW-103S	3-3
3.4	Calcium at MW-106S	3-4
3.5	Fluoride at MW-106S	3-5
3.6	Sulfate at MW-106S	3-6
3.7	TDS at MW-106S	3-7
3.8	Boron at MW-110S	3-8
3.9	Boron at MW-111S	3-8
3.10	Calcium at MW-111S	3-9
3.11	Fluoride at MW-111S	3-10
3.12	2 Sulfate at MW-111S	3-11
3.13	3 pH at MW-111S	3-12
3.14	•	
3.15	5 Boron at MW-112D	3-13
3.16	6 Calcium at MW-112D	3-14
3 17	7 TDS at MW-112D	3-15

3.18	Calcium at MW-114D	3-15
3.19	TDS at MW-114D	3-16
	TDS at MW-118D	
	Conclusions	
Section 5 C	Certification	5-1
Section 6 R	References	6-1

List of Figures

Figure 1 Site Location Map

Figure 2 CADL Extent and CCR Groundwater Monitoring Locations

Section 1 Introduction

1.1 Background

Entergy Arkansas, LLC (Entergy) operates the Entergy White Bluff Plant (Plant), a coal-fired power plant, to generate electricity. The Plant is located at 1100 White Bluff Road in Redfield, Jefferson County, Arkansas as shown on Figure 1. Coal combustion residuals (CCR) are produced as part of the electrical generation operations. The Plant has been generating and disposing of CCR in a portion of the on-site coal ash disposal landfill (CADL) since it began operations in 1981. The CADL is a Class 3N non-commercial industrial landfill and operates under Arkansas Division of Environmental Quality (ADEQ) Solid Waste Permit No. 0199-S3N-R3.

The ADEQ-permitted CADL consists of approximately 153-acres at the Plant and encompasses the following three areas:

- Approximately 50-acre portion of the CADL historically used for CCR disposal from 1981 until prior to the effective date of the CCR Rule (October 19, 2015). CCR was placed into ravines. This area was closed in accordance with the Plant's original solid waste permit (TRC, 2018a);
- Cells 1 through 4, which are the current cells used for CCR disposal and were constructed on top of, and adjacent to, the above-noted closed CCR disposal areas prior to the effective date of the CCR Rule. Cells 1 through 4 encompass approximately 30 acres and were constructed as follows:
 - Cells 1, 2, and 3 were constructed with an 18-inch thick compacted clay bottom liner;
 - Cell 4 was constructed with a two-foot thick compacted clay bottom liner and a leachate collection system; and
- Approximately 100-acre portion of the CADL that is currently undeveloped and may be used for CCR and/or non-CCR disposal.

In addition to the current 153-acre permitted landfill, there is an approximately 25 acre area to the immediate west of Cells 1 through 4 where during the initial period of operation of the Plant, ash was placed pursuant to the permits issued at that time. This historic fill area is covered with soil and vegetated.

Cells 1 through 4 accept CCR for disposal in accordance with the federal *Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule* (CCR Rule), effective October 19, 2015, and subsequent Final Rules promulgated by the United States

Environmental Protection Agency (USEPA). Cells 1 through 4 comprise the CCR management unit (CCR Unit) per the CCR Rule and are the focus of this ASD. The approximate limits of Cells 1 through 4, the closed disposal areas, and the undeveloped, future disposal areas within the ADEQ-permitted footprint of the CADL are shown in Figure 2.

Historical CCR management by Entergy has consisted of the following activities:

- Beneficial use in local construction projects;
- Beneficial use as roadbed material at the CADL; and
- Placement into the CADL.

1.1.1 Groundwater Monitoring and Statistical Analysis

In accordance with 40 CFR 257.90 through 257.94, Entergy installed a groundwater monitoring system for Cells 1 through 4 and has collected samples from the Certified Monitoring Well Network for laboratory analysis for CCR constituents and performed statistical analysis of the collected samples. Entergy installed a Certified Monitoring Well Network for the CCR Unit in accordance with 40 CFR 257.90 and 257.91. The Certified Monitoring Well Network consists of 23 wells installed into two stratigraphic units as follows:

- Eight wells are installed into an upper silty and clayey sand unit (Stratum I), which are designated as "S" monitoring wells; and
- Fifteen wells are installed into a lower silty and clayey sand and clay unit (Stratum III), which are designated as "D" monitoring wells.

Pursuant to 40 CFR 257.91(f), Entergy obtained certification by a qualified Arkansas-registered professional engineer (P.E.) stating that the Certified Monitoring Well Network has been designed and constructed to meet the requirements of 40 CFR 257.91 (see Groundwater Monitoring System Certification, TRC, February 26, 2018) of the CCR Rule (TRC 2018b).

As discussed above, Stratum I and Stratum III are currently being monitored pursuant to the CCR Rule. A groundwater sampling and analysis program including selection of statistical procedures to evaluate groundwater data was prepared per the CCR Rule (see Groundwater Sampling and Analysis Plan (FTN, 2017b)). Eight quarterly background CCR detection monitoring events were performed from October 2015 through June 2017 in accordance with 40 CFR 257.93(d) and 257.94(b). The eight quarterly detection monitoring background samples were analyzed for Appendix III to Part 257 – Constituents for Detection Monitoring and for Appendix IV to Part 257 – Constituents for Assessment Monitoring.

Following completion of quarterly background detection monitoring in June 2017, Entergy implemented semiannual detection monitoring per 40 CFR 257.94(b) for the CCR Unit. The first semiannual detection monitoring event was performed in August 2017 (2nd Half 2017). Subsequent detection monitoring events, with associated verification sampling when appropriate, have been performed on a semiannual basis since August 2017. Entergy performed the most recent semiannual detection monitoring event (2nd Half 2022) in December 2022. Per the CCR Rule, the semiannual detection monitoring event samples were analyzed for Appendix III constituents.

After completion of each semiannual detection monitoring event, the Appendix III laboratory analytical data were statistically evaluated to identify potential SSIs for Appendix III constituents above background levels. In accordance with 40 CFR 257.93(f)(6), Entergy obtained certification by a qualified Arkansas-registered P.E. stating that the selected statistical method is appropriate for evaluating the groundwater monitoring data for the CCR Unit (see Statistical Methods Certification, TRC, October 16, 2017).

Pursuant to 40 CFR 257.93(h), statistical analysis and re-analysis of the laboratory analytical data were performed to identify potential SSIs for the 2nd Half 2022 semiannual detection monitoring event. A total of 20 SSIs were identified for six Appendix III constituents: boron, calcium, fluoride, sulfate, pH, and TDS. SSIs were identified in five Stratum I and three Stratum III monitoring wells.

1.2 Purpose

Pursuant to 40 CFR 257.94(e)(2), Entergy may demonstrate that a source other than the CCR Unit caused the SSIs identified or that the SSIs resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The purpose of this report is to provide written documentation of the successful ASD for the SSIs identified for the 2nd Half 2022 semiannual detection monitoring event, pursuant to 40 CFR 257.94(e)(2) of the CCR Rule.

Section 2

Hydrogeology and Geochemistry

2.1 Site Hydrogeology

Historical subsurface investigations have identified the following three stratigraphic horizons of the Jackson Group (Kresse, et. al., 2014) and their associated hydrogeology for the CCR Unit and the CADL:

■ Stratum 1. Interbedded Clay, Silt, and Sand.

Stratum 1 ranges from approximately 10 to 54-feet thick and consists of interbedded silty sand (SM), clayey sand (SC), silts (ML and MH), and clay (CL and CH). Occasional deposits of carbonaceous material are present throughout Stratum 1. Based on the results of in-situ slug tests, hydraulic conductivity values range from 4.0×10^{-5} to 4.0×10^{-4} cm/sec;

■ Stratum 2. Clay.

Stratum 2 ranges from approximately 14 to 49-feet thick and consists of a very stiff clay (CH) with occasional silt and/or very fine-grained sand laminations. Occasional deposits of carbonaceous mater are present throughout Stratum 2. Based on the results of in-situ slug tests, hydraulic conductivity values range from 4.7×10^{-6} to 1.4×10^{-8} cm/sec;

■ Stratum 3. Clayey and Silty Sand.

Stratum 3 ranges from approximately 5 to 19-feet thick and consists primarily of clayey sand (SC) and/or silty sand (SM). A poorly graded, fine-grained sand (SM) was identified in one piezometer. The upper limits of Stratum 3 were encountered at elevations of 263 to 289-feet NGVD (depths ranging from 19 to 97-feet bgs). Based on results of in-situ slug tests, hydraulic conductivity was determined to be spatially variable and ranged from 4.2×10^{-7} to 2.5×10^{-4} cm/sec; and

Underlying Clay.

A clay unit underlies Stratum 3 and is described as a very dark grey clay that is highly laminated with light grey silt and very fined-grained sand. Based on results of an insitu slug test, the vertical hydraulic conductivity was 3.7×10^{-8} cm/sec.

It was concluded that Stratum 1 was not laterally continuous across the approximately 153-acre landfill. The estimated calculated seepage velocities in Stratums 1 and 3 were as follows:

Stratum 1: 2 to 20 feet/year; and

Stratum 3: <1 to 10 feet/year.

While Stratum I and Stratum III have been monitored per the CCR Rule since October 2015, it is unclear whether Stratum I and Stratum III are aquifers that are capable of providing sustainable well yields consistent with USEPA aquifer use criteria (*e.g.*, 0.1 gallons per minute). This uncertainty is based on the following evidence:

- Stratum I is present to the west of the CADL and only present within the western portion of the ADEQ-permitted boundaries of the CADL, approximately corresponding to the boundaries of the closed portions of the CADL. The CCR Unit and Stratum I are not continuous to the east across the entire footprint of the CADL;
- In-situ hydraulic conductivities are low to very low for both Stratum I and Stratum III, indicating that sustainable well yields may not be obtainable from Stratum I and Stratum III at volumes that meet the minimum USEPA well use criteria (*e.g.*, 0.1 gallons per minute); and
- During the quarterly and semiannual detection monitoring events performed from October 2015 through December 2021, which have been performed using the low-flow purge and sample methodology, the sampling teams have consistently documented that turbidity values are often greater than 10 Nephelometric Turbidity Units (NTU). Furthermore, wells have been pumped dry during sampling for both Stratum I and Stratum III, indicating that neither sustainable well yields nor useable drinking water are associated with Stratum I and Stratum III.

To evaluate this uncertainty, Entergy began performing hydrogeologic investigations during 2019 and 2020, continuing through 2021 to evaluate both the stratigraphy and hydrogeology beneath the CCR Unit and to identify the aquifer(s) making up the uppermost aquifer system at the CCR Unit and CADL and the appropriateness of the current Certified Monitioring Well Network.

2.2 General Groundwater Quality

Regionally, groundwater quality in the Jackson Group consists of a sodium- and calcium-sulfate water type, with generally poor water quality (FTN 2014, Kresse et. al 2014). Reported water quality concentrations for select secondary drinking water contaminants compared to USEPA secondary maximum contaminant levels (MCLs) are provided in the table below.

Jackson Group Groundwater Water Quality

	Concentrat	tion Range	USEPA	
Constituent	Low High		Secondary MCL	
Iron (mg/L)	0.05	19	0.3	
pH (s.u.)	2.9	8.0	6.5 - 8.5	
Sulfate (mg/L)	0.6	3,080	250	
TDS (mg/L)	11	5,330	500	

As noted in the table above, the natural range of groundwater quality within the Jackson Group, which includes both Stratum I and Stratum III, exceeds the secondary drinking water MCLs established by the USEPA for drinking water or, in the case of pH, is less than its secondary MCL. Finally, the results of historical groundwater monitoring at the Plant conducted from 1991 through 1996 showed that normal indicator parameters were masked by naturally elevated concentrations of the monitored constituents (FTN 2014, TRC 2018a).

2.3 Groundwater Geochemistry

Understanding the geochemistry of groundwater is essential to examining the groundwater monitoring data, explaining the relationships between the characteristics, and analyzing natural as well as anthropogenic impacts on groundwater systems. Source apart, geochemical processes play an important role in controlling the chemical composition of groundwater, including carbonate equilibrium, oxidation-reduction reactions and adsorption-desorption processes. Based the site geological conditions, several groundwater parameters are discussed as follows, including boron, fluoride, sulfate, calcium, TDS and pH.

2.3.1 Boron in Groundwater

Boron in normally considered as a minor constituent in groundwater as it is generally present in low concentrations (Palmucci & Rusi, 2014). Source apart, the primary origin of boron in groundwater is the process of sorption and desorption to the mineral surfaces including rocks and soils (Ravenscroft & McArthur, 2004). The regulatory guideline values of boron in drinking water are given at 0.5 mg/L by WHO and 0.9 mg/L by USEPA in human consumption for long-term exposure (WHO, 2008; USEPA, 2008). Boron is often cited as contamination tracer and usually occurs as a non-ionized form as H₃BO₃ in soils at pH<8.5, but above this pH, it exists as an anion, B(OH)₄ (Upadhyaya et al., 2014).

The factors that may influence the boron concentration in groundwater include weathering, human activity, evaporative concentration, ion-exchange, electrical conductivity (EC), and pH. Ravenscroft & McArthur (2004) studied the mechanism of regional boron enrichment groundwater and the results indicated that the main process caused high boron enriched in groundwater was the flushing by fresh groundwater other than geolofical setting, climate or age. The desorption of Boron from mineral surfaces could be affected by pH, ionic strength, salinity and HCO₃/CO₃. Decreasing of pH will increase the dissolution of boron from the mineral surfaces. Boron adsorption favors high pH and boron desorption favors low pH on rocks, soils and organic matters (Hollis et al., 1988; Keren & Communar, 2009; Tabelin et al., 2014).

A few more research studies confirmed that the presence of boron in groundwater depends on the EC (salinity), such that it increases with increasing EC. Halim et al. (2010) reported that the increasing of Cl⁻ concentration contributes to increase in EC value since a strong linear correlation (R^2 = 0.88) between EC and Cl⁻ was observed. Palmucci & Rusi (2014) observed a clear correlation between the high concentrations of boron and the chloride-sodium facies, which are characterized by high saline content, negative redox potential, and low value of the SO₄²-/Cl⁻ ratio. Rodriguez-Espinosa et al. (2020) found that the Boron concentration in groundwater was related to the SO₄²- and age affect.

Regarding to the Boron concentration level on the sites, the main source of Boron is more natural than anthropogenic. Therefore, the detected increasing of Boron concentration is likely due to the geochemistry condition changes, such as pH, ion exchanges, EC and salinity.

2.3.2 Fluoride in Groundwater

The common natural source of fluoride in groundwater is the dissolution of natural fluoride-bearing mineral, such as fluorspar, fluorapatite, amphiboles, hornblende, tremolite and biotite (Luo et al., 2018). The natural concentration of fluoride in groundwater depends on the geological, chemical and physical characteristics of the aquifer, the porosity and acidity of the soil and rocks, the surrounding temperature, the action of other chemical elements, depth of the aquifer and intensity of weathering (Brindha & Elango, 2011). Due to the concentration range of this site, geochemical process is the main factor controlling fluoride in groundwater.

Ion exchange, evaporation, adsorption-desorption, ion competition, mixing, salinization and anthropogenic pollution are geochemical processes that can take place and cause the occurrence of fluoride in groundwater (Luo et al., 2018). Main factors that might cause the increase of fluoride concentration in groundwater include alkaline pH, high concentration of sodium and bicarbonate, and low concentration of calcium.

Alkaline pH can increase the fluoride dissolution from mineral surfaces into groundwater. Saxena & Ahmed (2001) observed that alkaline conditions with pH ranging between 7.6 and 8.6 are favorable for dissolution of fluorite mineral from the host rocks.

Sodium bicarbonate type waters are typical of high fluoride waters. Many research studies have demonstrated positive correlations between fluoride and both bicarbonate and sodium as well as an inverse relation between fluoride and calcium. (Mondal et al., 2014; Guo et al., 2012; Chen et al., 2020). The chemical reactions for the dissolution of fluoride in the presence of high bicarbonate and sodium, and low calcium content is described as follows (Kimambo et al., 2019):

$$Na^{+} + +HCO_{3}^{-} - \rightarrow NaHCO_{3}$$

$$CaF_{2} + +2NaHCO_{3} \rightarrow CaCO_{3} + 2Na^{+} + 2F^{-} + H_{2}O + CO_{2}$$

Luo et al. (2018) reported that cation exchange can increase the fluoride concentration when increasing the Na/Ca molar ratio via ion complexation, and salt effect can further increase the fluoride dissolution from mineral surfaces.

In addition, evaporation is another potential reason to increase the fluoride concentration in shallow groundwater. Evaporation could directly remove water from shallow aquifers and elevate the fluoride concentration. Evaporation could increase ion concentrations, leading to the precipitation of some major minerals, reducing the calcium concentration, and favoring the dissolution of fluoride. Anthropogenic sources may also increase the fluoride in groundwater, such as pesticide and fertilizer use, and industrial waste discharge.

2.3.3 Sulfate in Groundwater

Sulfate is ubiquitous in groundwater, with both natural and anthropogenic sources. There are many potential sources of sulfate including mineral dissolution, atmospheric deposition, and other anthropogenic sources (mining, fertilizer, synthetic detergents, industrial wastewater etc.) (Miao et al., 2012). As water moves through soil and rock formations that contain sulfate minerals, some of the sulfate dissolves into the groundwater. Minerals that contain sulfate include magnesium sulfate (Epsom salt), sodium sulfate (Glauber's salt), and calcium sulfate (gypsum). Gypsum is an important contributor to the high levels of sulphate in many aquifers of the world. Higher levels of sulfate in groundwater are common in the western part of the United States (MDH, 2008).

Sulfate is mobile in soil and inputs to soil will impact groundwater eventually. Many research studies indicated that atmospheric deposition, dissolution of gypsum, oxidation of sulfide mineral and anthropogenic inputs will contribute to sulfate. Based on the geological condition of the site, atmospheric deposition and anthropogenic activities could be the main factors (Einsiedl & Mayer, 2005; Pu et al., 2012).

2.3.4 Calcium in Groundwater

Calcium is one of the most important ionic constituents in groundwater (Razowska-jaworek, 2014). Water-rock interaction occurs when water meets rocks or minerals, limestone, marble, calcite, dolomite, gypsum, fluorite and apatite. Natural dissolution of carbonate rocks and minerals is the primary source of calcium in groundwater (Jiang et al., 2009). Calcium is an important determinant of water hardness (Ca²⁺), while magnesium is the other hardness determinant. The most common shallow groundwater type is Ca-HCO₃ dominated and Ca(Mg)-HCO₃ dominated.

A literature review indicates the major factors that may influence the calcium concentration in groundwater include rock weathering, pH, electrical conductivity and anthropogenic activities (mining, concrete material dissolution, fertilizer etc.) (Hájek et al., 2021; Schot & Wassen, 1993; Shi et al., 2018). Based on the geological condition of the site, pH, electrical conductivity and anthropogenic activities could be the potential reasons for the calcium SSI.

2.3.5 TDS in Groundwater

Total dissolved solids represent the combined total of inorganic and organic substances contained in the groundwater, and it can be a general indicator of water quality. These solids are primarily minerals, salts, and organic matters, which may originate from sources such as weathering of minerals, urban runoff, sewage, effluent discharges, agricultural, decaying organisms, and other human activities (de-icing roads, water softer use). Common salts that contribute to TDS are sodium, chloride, calcium, magnesium, potassium, sulfates, and bicarbonates (Olumuyiwa I. Ojo, 2012).

TDS levels in groundwater is usually higher than surface water due to the longer contact time with the underlying rocks and sediments. Since many minerals are water soluble, high concentrations can accumulate over time through the constantly reoccurring process of precipitation and evaporation.

TDS is related to other water quality parameters like hardness, which may occur if the high TDS content is due to the presence of carbonates. A few research studies simulated the relationship between TDS and other groundwater parameters such as EC and salinity, using different models. Due to the complicated geological conditions, the observation was not consistent at different study sites (Atekwana et al., 2004; Banadkooki et al., 2020; Poursaeid et al., 2020).

2.3.6 pH in Groundwater

Groundwater pH is an important aspect to consider in the monitoring and management of CCR landfill sites, as changes in pH can affect the quality of groundwater and the potential for release of contaminants. The potential reasons for pH changes in groundwater are as following:

- Changes in water flow patterns. Changes in the flow patterns of groundwater can cause the mixing of different water sources with varying pH levels, resulting in an overall increase in the pH of the groundwater at the site.
- Drainage from adjacent areas. Groundwater from adjacent areas with higher pH levels
 may be flowing into the landfill site and raising the overall pH of the groundwater at the
 site.
- Changes in geochemistry condition. Geochemistry can play a role in affecting the pH of groundwater at a landfill site, such as mineral dissolution, pH buffering capacity, redox

reactions, and groundwater-rock interactions (Edmunds & Smedley, 1996; Wilkin & DiGiulio, 2010).

- 1) Mineral dissolution. Minerals present in the surrounding soil can dissolve and release basic or acidic compounds into the groundwater, affecting the pH, e.g., the dissolution of calcium carbonate can increase the pH of the groundwater by releasing carbonate ions, the dissolution and oxidation of pyrite can decrease the pH of groundwater by releasing hydrogen ions.
- 2) pH buffering capacity. The presence of minerals with a high buffering capacity in the surrounding soil can help to regulate the pH of the groundwater, preventing drastic changes in response to other factors. For example, the presence of minerals like calcite and dolomite can buffer the groundwater pH, helping to maintain a relatively stable pH even in the presence of acidic compounds.
- 3) Redox reactions. The oxidation-reduction reactions that occur in the surrounding soil can impact the pH of the groundwater. The oxidation of iron-sulfide minerals can result in the release of sulfuric acid, which can lower the pH of groundwater. The oxidation of reduced sulfur species to sulfate, which can increase the pH of groundwater (Jacks, 2017).
- 4) Groundwater-rock interactions. The interaction between groundwater and the rocks and minerals in the surrounding soil can affect the pH of the groundwater. For example, groundwater can dissolve or release basic or acidic compounds from the minerals in the rock, affecting the pH.

Section 3 Alternate Source Demonstration

Pursuant to 40 CFR 257.94(e)(2), Entergy may demonstrate that a source other than the CCR Unit caused the SSI or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. As discussed previously, the 2nd Half 2022 semiannual detection monitoring event was performed in December 2022. Statistical analysis of the 2nd Half 2022 semiannual detection monitoring data was performed pursuant to 40 CFR 257.93(f) and (g) and in accordance with the Statistical Methods Certification (TRC 2017b) and the Statistical Analysis Plan (FTN 2017a). Based on either increasing trends at 98% confidence levels using Sen's Slope test and/or intrawell prediction limits statistical analyses, the following 20 SSIs were identified and summarized in Table 1:

- Calcium and TDS (MW-102S);
- TDS (MW-103S);
- Calcium, fluoride, sulfate and TDS (MW-106S);
- Boron (MW-110S);
- Boron, calcium, fluoride, sulfate, pH and TDS (MW-111S);
- Boron, calcium, and TDS (MW-112D);
- Calcium and TDS (MW-114D); and
- TDS (MW-118D).

Other Appendix III constituent concentrations were within their trends at 98% confidence levels using Sen's slope test and/or intrawell prediction limits in the CCR Rule groundwater monitoring system wells.

A discussion for each of the individual SSIs identified for the Stratum I and III wells and associated evidence demonstrating that the 20 SSIs were not caused by a release from the CCR Unit is provided in the subsections below.

Table 1 SSIs – December 2022 Semiannual Detection Monitoring Event

Stratum	Well	Analyte	Value (mg/L)	Intrawell Prediction Limit (mg/L)	SI by Sen's Slope test
	MW-102S MW-103S	Calcium	16.2	13.8	N
		TDS	3,860	219	N
		TDS	980	444	N
	MW-106S MW-110S	Calcium	31.6	23.8	Y
		TDS	979	827	Y
		Fluoride	0.803	0.625	Y
		Sulfate	643	604	Y
I		Boron	2.03	1.586	Y
	MW-111S	Boron	6.26	4.495	Y
		Calcium	112	36.8	Y
		TDS	1,270	541	Y
		Fluoride	1.2	0.283	Y
		рН	3.71	3.9-6	N
		Sulfate	879	398	Y
III	MW-112D	Boron	0.278	0.252	N
		Calcium	39.3	23.8	Y
		TDS	302	205	Y
	MW-114D	Calcium	52.1	50.8	N
		TDS	331	322	N
	MW-118D	TDS	557	545	N

3.1 Calcium at MW-102S

The calcium SSI identified at MW-102S is a result of goundwater geochemistry conditions changes and potential infiltration of surface water. The following evidence supports this determination:

Calcium was detected in MW-102S at a concentration of 16.2 mg/L in the December 2022 sample, which exceeded the intrawell prediction limit of 13.8 mg/L. Compared to the value of 10.3 mg/L in the June 2022 sample, the calcium concentration increased by 57%. Background concentrations of calcium have varied from 7.61 to 12.6 mg/L at upgradient monitoring well MW-101S. The calcium concentration of 16.2 mg/L detected in MW-102S during the 2nd Half 2022 semiannual detection monitoring event exceeded this range. The calcium exceedance could be caused the changes of groundwater geochemistry conditions, especially with the high TDS detected in MW-102S, and potential infiltration of surface water.

3.2 TDS at MW-102S

The TDS SSI identified at MW-102S is a result of analytical error and groundwater geochemistry conditions change. The following evidence supports this determination:

- TDS was detected in MW-102S at a concentration of 3,860 mg/L in the December 2022 sample, which exceeded the intrawell prediction limit of 219 mg/L. Compared to the value of 183 mg/L in the June 2022 sample, the TDS concentration increased approximately 20 times. MW-102S is one of the Stratum I background monitoring wells. No significant increasing trend was observed by the Mann-Kendal statistic model. No significant increase of other ions' concentrations was observed. The TDS exceedance in MW-102S could be most likely analytical error. The monitoring data in next sampling event will be used to confirm this hypothesis.
- TDS exceedance in MW-102S could also be the result of enhanced mineral/soil dissolution due to groundwater geochemistry conditions change.

3.3 TDS at MW-103S

The TDS SSI identified at MW-103S is a result of the groundwater geochemistry conditions, analytical error, the potential impact of CCR disposed at the CADL prior to October 19, 2015 and potential infiltration of surface water impacted by on-site CCR into the subsurface in the area of MW-103S. The following evidence supports this determination:

■ TDS was detected in MW-111S at a concentration of 980 mg/L in the December 2022 sample, which exceeded the intrawell prediction limit of 444 mg/L. Compared to the value of 122 mg/L in the June 2022 sample, the TDS concentration increased approximately 7 times. No significant increasing trend was observed by the Mann-Kendal statistic model. The TDS exceedance in MW-103S could be analytical error, or a result of groundwater geochemistry

conditions change which favors minerals dissolution. As discussed in Section 2.2, the Jackson Group groundwater is sodium- and calcium-sulfate water type. Sodium could be another main contribution to the TDS exceedance with the increasing of sulfate. The acidic groundwater could be one of the potential reasons.

- Based on review of potentiometric surface mapping, locations of closed portions of the CADL, and the CCR Unit relative to MW-103S, MW-103S may monitor groundwater associated with the pre-CCR Rule closed portions of the CADL rather than the CCR Unit. Therefore, concentrations measured in MW-103S may be more reflective of pre-CCR Rule disposal rather than of the Unit.
- Surface water that has come into contact with on-site CCR at the CCR Unit has migrated from the perimeter drainage swale for the CCR Unit due to periodic build-up of sediment within the perimeter surface water swale. When this build-up occurs, surface water flows out of the swale and over the adjoining access road and then to the area of MW-103S. This drainage swale carries surface water runoff from closed portions of the CADL as well as from the CCR Unit. This surface water ultimately migrates from the MW-103S area via surface water swales within the ADEQ-permitted CADL footprint, with ultimate discharge into the site surge pond as per Entergy's NPDES permit. Based on the close proximity of this surface water to MW-103S, it appears likely that surface water infiltration may have impacted the MW-103S monitoring results.

3.4 Calcium at MW-106S

The calcium SSI identified at MW-106S is a result of the acidic geochemistry condition in groundwater, potential impact of CCR disposed at the CADL prior to October 19, 2015, and potential infiltration of surface water impacted by on-site CCR into the subsurface in the area of MW-106S. The following evidence supports this determination:

- Calcium was detected in MW-106S at a concentration of 31.6 mg/L in the December 2022 sample. Compared to the value of 30 mg/L in the June 2022 sample, the calcium concentration was consistent. The Mann-Kendal statistic of 134 exceeded the critical value of 68 indicating a significant increasing trend at the 98% confidence level. As discussed in Section 2.3, pH and EC could affect calcium concentrations in groundwater. A low pH value of 3.83 was detected in the December 2022 sample and the historical data review shows pH in MW-106S stays in a steady range of 3.6 − 4.5, which indicates the groundwater in this area is acidic and it was related to pre-CCR Rule disposal source or natural geochemistry conditions. The acidic groundwater condition favors the dissolution of calcium from soil and mineral surfaces to water phase. The significant increasing trend of calcium from 16 mg/L in 2015 to 40 mg/L in 2021 could be a result of the acidic geochemistry condition. The increasing cation and anion concentrations will also lead to the increasing EC, which will affect other metals dissolution.
- The concentrations of calcium in MW-101S, which is a background well, have varied from 14 to 98.5 mg/L during the overall time period of CCR detection monitoring. The calcium

concentration of 98.5 mg/L for MW-101S is greater than the calcium concentration of 31.6 mg/L measured at MW-106S during the 2nd Half 2022 semiannual detection monitoring event. Therefore, the calcium concentration measured at MW-106S is within the range of natural variation in background groundwater quality.

- Based on review of potentiometric surface mapping, locations of closed portions of the CADL underlying the CCR Unit, and the CCR Unit relative to MW-106S, it appears that MW-106S may monitor groundwater associated with the underlying pre-CCR Rule closed portions of the CADL rather than the CCR Unit; therefore, concentrations measured in MW-106S are likely more reflective of pre-CCR Rule disposal rather than of the CCR Unit.
- Surface water that has come into contact with on-site CCR at the CCR Unit has migrated from the perimeter drainage swale for the CCR Unit due to periodic build-up of sediment within the perimeter surface water swale. When this build-up occurs, surface water flows out of the swale and over the adjoining access road and then to the area of MW-106S. This drainage swale carries surface water runoff from closed portions of the CADL as well as from the CCR Unit. This surface water ultimately migrates from the MW-106S area via surface water swales within the ADEQ-permitted CADL footprint, with ultimate discharge into the site surge pond as per Entergy's NPDES permit. Based on the close proximity of this surface water to MW-106S, it appears likely that surface water infiltration may have impacted the MW-106S monitoring results.

3.5 Fluoride at MW-106S

The fluoride SSI identified at MW-106S is a result of groundwater geochemistry conditions, potential impact of CCR disposed at the CADL prior to October 19, 2015, and potential infiltration of surface water impacted by on-site CCR into the subsurface in the area of MW-106S. The following evidence supports this determination:

- Fluoride was detected in MW-106S at a concentration of 0.803 mg/L in the December 2022 sample. Compared to the value of 0.661 mg/L in the June 2022 sample, the calcium concentration increased by 21%. The Mann-Kendal statistic of 110 exceeded the critical value of 68 indicating a significant increasing trend at the 98% confidence level. This concentration exceeded the intrawell prediction limit of 0.625 mg/L and the maximum fluoride concentrations of 0.1 to 0.135 mg/L measured in the three Stratum I background monitoring wells (MW-101S, MW-102S, and MW-104S). However, it should be noted that the measured fluoride concentrations are less than the federal primary drinking water maximum contaminant level (MCL) standard of 4.0 mg/L.
- The fluoride concentration in MW-106S stayed in a narrow range of 0.6-0.68 mg/L in the past two years. pH of the groundwater is not an impact of the exceedance since fluoride dissolution favors alkaline pH. As discussed in Section 2.3, fluoride has positive correlation

with both bicarbonate and sodium, and an inverse relation with calcium. With the increasing trend of calcium in the groundwater, ion exchange process with high sodium and bicarbonate can result in the increasing of fluoride in groundwater.

- Based on review of potentiometric surface mapping, locations of closed portions of the CADL underlying the CCR Unit, and the CCR Unit relative to MW-106S, it appears that MW-106S may monitor groundwater associated with the underlying pre-CCR Rule closed portions of the CADL rather than the CCR Unit; therefore, concentrations measured in MW-106S may be more reflective of pre-CCR Rule disposal rather than of the CCR Unit.
- Surface water that has come into contact with on-site CCR at the CCR Unit has migrated from the perimeter drainage swale for the CCR Unit due to periodic build-up of sediment within the perimeter surface water swale. When this build-up occurs, surface water flows out of the swale and over the adjoining access road and then to the area of MW-106S. This drainage swale carries surface water runoff from closed portions of the CADL as well as from the CCR Unit. This surface water ultimately migrates from the MW-106S area via surface water swales within the ADEQ-permitted CADL footprint, with ultimate discharge into the site surge pond as per Entergy's NPDES permit. Based on the close proximity of this surface water to MW-106S, it appears likely that surface water infiltration may have impacted the MW-106S monitoring results.

3.6 Sulfate at MW-106S

The sulfate SSI identified at MW-106S is a result of natural geochemistry condition in soil and groundwater, potential impact of CCR disposed at the CADL prior to October 19, 2015, and potential infiltration of surface water impacted by on-site CCR into the subsurface in the area of MW-106S. The following evidence supports this determination:

- Sulfate was detected in MW-106S at a concentration of 643 mg/L in the December 2022 sample, which exceeded the intrawell prediction limit of 604 mg/L. Compared to the value of 633 mg/L in the June 2022 sample, the sulfate concentration was consistent. The elevated sulfate concentrion in the past three years could be caused by the acidic geochemistry condition discussed above or an anthropogenic source since sulfate is mobile in soils and can get into groundwater via surface water infiltration. Another potential reseaon is the natural occurrence of sulfide minerals in the soil, such as pyrite. The oxidation of sulfide minerals will slowly release sulfate and hydrogen ion into groundwater, which will lead to the increasing of sulfate and decreasing of pH.
- Surface water that has come into contact with on-site CCR at the CCR Unit has migrated from the perimeter drainage swale for the CCR Unit due to periodic build-up of sediment within the perimeter surface water swale. When this build-up occurs, surface water flows out of the swale and over the adjoining access road and then to the area of MW-106S. This drainage swale carries surface water runoff from closed portions of the CADL as well as from the CCR Unit. This surface water ultimately migrates from the MW-106S area via surface water

swales within the ADEQ-permitted CADL footprint, with ultimate discharge into the site surge pond as per Entergy's NPDES permit. Based on the close proximity of this surface water to MW-106S, it appears likely that surface water infiltration may have impacted the MW-106S monitoring results.

Based on review of potentiometric surface mapping and locations of closed portions of the CADL, and the CCR Unit relative to MW-106S, MW-106S may monitor groundwater associated with the pre-CCR Rule closed portions of the CADL rather than the CCR unit; therefore, concentrations measured in MW-106S may be more reflective of pre-CCR Rule disposal rather than of the CCR Unit.

3.7 TDS at MW-106S

The TDS SSI identified at MW-106S is a result of the acidic groundwater geochemistry condition, sodium sulfate source, potential impact of CCR disposed at the CADL prior to October 19, 2015, and potential infiltration of surface water impacted by on-site CCR into the subsurface in the area of MW-106S. The following evidence supports this determination:

- TDS was detected in MW-106S at a concentration of 979 mg/L in the December 2022 sample, which exceeded the intrawell prediction limit of 827 mg/L. Compared to the value of 920 mg/L in the June 2022 sample and 1090 mg/L in the November 2021 sample, the TDS was stable. As discussed in Section 2.2, the Jackson Group groundwater is sodium- and calcium-sulfate water type. Sodium could be another main contribution to the TDS exceedance with calcium and sulfate. High sodium concentration can also cause the fluoride exceedance. The acidic groundwater could be one of the potential reasons. An alternate source containing sodium sulfate should also be considered, which can be mineral dissolution, surface water flux or atmospheric deposition.
- Based on review of potentiometric surface mapping, locations of closed portions of the CADL, and the CCR Unit relative to MW-106S, MW-106S may monitor groundwater associated with the pre-CCR Rule closed portions of the CADL rather than the CCR Unit. Therefore, concentrations measured in MW-106S may be more reflective of pre-CCR Rule disposal rather than of the CCR Unit.
- Surface water that has come into contact with on-site CCR at the CCR Unit has migrated from the perimeter drainage swale for the CCR Unit due to periodic build-up of sediment within the perimeter surface water swale. When this build-up occurs, surface water flows out of the swale and over the adjoining access road and then to the area of MW-106S. This drainage swale carries surface water runoff from closed portions of the CADL as well as from the CCR Unit. This surface water ultimately migrates from the MW-106S area via surface water swales within the ADEQ-permitted CADL footprint, with ultimate discharge into the site surge pond as per Entergy's NPDES permit. Based on the close proximity of this surface water to MW-106S, it appears likely that surface water infiltration may be impacting the MW-106S monitoring results.

3.8 Boron at MW-110S

The Boron SSI identified at MW-110S is a result of the acidic groundwater geochemistry condition and potential impact of CCR disposed at the CADL prior to October 19, 2015. The following evidence supports this determination:

- Boron was detected in MW-110S at a concentration of 2.03 mg/L in the December 2022 sample, which exceeded the intrawell prediction limit of 1.586 mg/L. Compared to the value of 2.03 mg/L in the June 2022 sample, the boron concentration was consistent. The Mann-Kendal statistic of 136 exceeded the critical value of 68 indicating a significant increasing trend at the 98% confidence level. As discussed in Section 2.3, the main factors that may influence boron concentration in groundwater are pH and EC. Decreasing of pH will increase the dissolution of boron from the mineral surfaces. Boron in groundwater will increase with the increasing of EC. The historical data review shows the relatively low salts concentrations in MW-110S area, which indicates EC is not the factor causing the boron increasing trend. A low pH value of 4.11 was detected in the December 2022 sample. The acidic groundwater condition favors the boron dissolution from soil and mineral surface. Based on the consistent boron levels in groundwater, the significant increasing trend of boron is more likely relative to the acidic geochemistry condition other than a contamination source.
- Based on review of potentiometric surface mapping, locations of historic fill, locations of closed portions of the CADL underlying the CCR Unit, and the CCR Unit relative to MW-110S, it appears that MW-110S may monitor groundwater associated with the underlying pre-CCR Rule closed portions of the CADL rather than the CCR Unit; therefore, concentrations measured in MW-110S may be more reflective of pre-CCR Rule disposal rather than of the CCR Unit.

3.9 Boron at MW-111S

The boron SSI identified at MW-111S is a result of natural groundwater geochemistry conditions with low pH and high EC, potential impact of CCR disposed at the CADL prior to October 19, 2015, and potential infiltration of surface water impacted by on-site CCR into the subsurface in the area of MW-111S. The following evidence supports this determination:

Boron was detected in MW-111S at a concentration of 6.26 mg/L in the December 2022 sample, which exceeded the intrawell prediction limit of 4.495 mg/L. Compared to the value of 5.39 mg/L in the June 2022 sample, the boron concentration increased by 16%. The Mann-Kendal statistic of 128 exceeded the critical value of 68 indicating a significant increasing trend at the 98% confidence level. As discussed in Section 2.3, the main factors that may influence boron concentration in groundwater are pH and EC. Decreasing of pH will increase the dissolution of boron from the mineral surfaces. Boron in groundwater will increase with the increasing of EC. A low pH value of 3.71 was detected in the December 2022 sample and the pH of groundwater in the area of MW-111S stayed in a steady range of 3.6 to 4.5 in the

past five years. The acidic groundwater condition favors the boron dissolution from soil and mineral surface. The increasing sulfate and TDS in MW-111S demonstrates that the groundwater in this area has relatively high EC, which will cause the increasing of boron concentration in groundwater. Based on the consistent boron levels, the significant increasing trend of boron is more likely relative to the geochemistry conditions with low pH and high EC other than a contamination source.

- Based on review of potentiometric surface mapping and locations of closed portions of the CADL, and the CCR Unit relative to MW-111S, MW-111S may monitor groundwater associated with the pre-CCR Rule closed portions of the CADL rather than the CCR Unit. Therefore, concentrations measured in MW-111S may be more reflective of pre-CCR Rule disposal rather than of the CCR Unit.
- Surface water that has come into contact with on-site CCR at the CCR Unit has migrated from the perimeter drainage swale for the CCR Unit due to periodic build-up of sediment within the perimeter surface water swale. When this build-up occurs, surface water flows out of the swale and over the adjoining access road and then to the area of MW-111S. This drainage swale carries surface water runoff from closed portions of the CADL as well as from the CCR Unit. This surface water ultimately migrates from the MW-111S area via surface water swales within the ADEQ-permitted CADL footprint, with ultimate discharge into the site surge pond as per Entergy's NPDES permit. Based on the close proximity of this surface water to MW-111S, it appears likely that surface water infiltration may be impacting the MW-111S monitoring results.

3.10 Calcium at MW-111S

The calcium SSI identified at MW-111S is a result of natural groundwater geochemistry conditions with low pH and high EC, potential impact of CCR disposed at the CADL prior to October 19, 2015, and potential infiltration of surface water impacted by on-site CCR into the subsurface in the area of MW-111S. The following evidence supports this determination:

Calcium was detected in MW-111S at a concentration of 112 mg/L in the December 2022 sample, which exceeded the intrawell prediction limit of 36.8 mg/L. Compared to the value of 115 mg/L in the June 2022 sample, the calcium concentration was consistent. Normality analysis of the calcium data set at MW-111S was non-normal requiring trend analysis of the data set to determine a potential significance increase. The Mann-Kendal statistic of 149 exceeded the critical value of 68 indicating a significant increasing trend at the 98% confidence level. As discussed in Section 2.3, pH and EC could affect calcium concentrations in groundwater. A low pH value of 3.71 was detected in the December 2022 sample and the pH of groundwater in the area of MW-111S stayed in a steady range of 3.6 to 4.5 in the past five years. The acidic condition favors the dissolution of calcium from soil and mineral surfaces to water phase. The relatively high EC in groundwater discussed above can also increase the calcium concentration. The significant increasing trend of calcium could be a result of the natural geochemistry conditions with low pH and high EC.

- Background concentrations of calcium have varied from 14 to 98.5 mg/L at upgradient monitoring well MW-101S. The calcium concentration of 112 mg/L at MW-111S during the 2nd Half 2022 semiannual detection monitoring event is beyond but close to the top background concnetration. Therefore, the calcium exceedance is still in the range of natural variation in background groundwater quality.
- Based on review of potentiometric surface mapping, locations of closed portions of the CADL, and the CCR Unit relative to MW-111S, MW-111S may monitor groundwater associated with the underlying pre-CCR Rule closed portions of the CADL rather than the CCR Unit. Therefore, concentrations measured in MW-111S may be more reflective of pre-CCR Rule disposal rather than of the CCR Unit.
- Surface water that has come into contact with on-site CCR at the CCR Unit has migrated from the perimeter drainage swale for the CCR Unit due to periodic build-up of sediment within the perimeter surface water swale. When this build-up occurs, surface water flows out of the swale and over the adjoining access road and then to the area of MW-111S. This drainage swale carries surface water runoff from closed portions of the CADL as well as from the CCR Unit. This surface water ultimately migrates from the MW-111S area via surface water swales within the ADEQ-permitted CADL footprint, with ultimate discharge into the site surge pond as per Entergy's NPDES permit. Based on the close proximity of this surface water to MW-111S, it appears likely that surface water infiltration may have impacted the MW-111S monitoring results.

3.11 Fluoride at MW-111S

The fluoride SSI identified at MW-111S is a result of natural groundwater geochemistry conditions, potential impact of CCR disposed at the CADL prior to October 19, 2015 and potential infiltration of surface water impacted by on-site CCR into the subsurface in the area of MW-111S. The following evidence supports this determination:

Fluoride was detected in MW-111S at a concentration of 1.2 mg/L in the December 2022 sample, which exceeded the intrawell prediction limit of 0.283 mg/L and the maximum fluoride concentrations of 0.1 to 0.135 mg/L measured in the three Stratum I background monitoring wells (MW-101S, MW-102S, and MW-104S). Compared to the value of 0.748 mg/L in the June 2022 sample, the fluoride concentration increased by 60%. The Mann-Kendal statistic of 145 exceeded the critical value of 68 indicating a significant increasing trend at the 98% confidence level. However, it should be noted that the measured fluoride concentrations are less than the federal primary drinking water MCL of 4.0 mg/L. pH of the groundwater is not an impact of the exceedance since fluoride dissoluction favors alkaline pH. As discussed in Section 2.3, fluoride has positive correlation with both bicarbonate and sodium, and an inverse relation with calcium. With the increasing trend of calcium in the groundwater, ion exchange process with high sodium and bicarbonate can result in the increasing of fluoride in groundwater. The fluoride increasing trend could also be a result of continouse dissoved salts from the soils and minerals associated with the increased TDS.

- Based on review of potentiometric surface mapping, locations of closed portions of the CADL, and the CCR Unit relative to MW-111S, MW-111S may monitor groundwater associated with the pre-CCR Rule closed portions of the CADL rather than the CCR Unit. Therefore, concentrations measured in MW-111S may be more reflective of pre-CCR Rule disposal rather than of the CCR Unit.
- Surface water that has come into contact with on-site CCR at the CCR Unit has migrated from the perimeter drainage swale for the CCR Unit due to periodic build-up of sediment within the perimeter surface water swale. When this build-up occurs, surface water flows out of the swale and over the adjoining access road and then to the area of MW-111S. This drainage swale carries surface water runoff from closed portions of the CADL as well as from the CCR Unit. This surface water ultimately migrates from the MW-111S area via surface water swales within the ADEQ-permitted CADL footprint, with ultimate discharge into the site surge pond as per Entergy's NPDES permit. Based on the close proximity of this surface water to MW-111S, it appears likely that surface water infiltration may have impacted the MW-111S monitoring results.

3.12 Sulfate at MW-111S

The sulfate SSI identified at MW-111S is a result of natural groundwater geochemistry condition of low pH and potential oxidation of sulfide minerals, potential impact of CCR disposed at the CADL prior to October 19, 2015, and potential infiltration of surface water impacted by on-site CCR into the subsurface in the area of MW-111S. The following evidence supports this determination:

- sulfate was detected in MW-111S at a concentration of 879 mg/L in the December 2022 sample, which exceeded the intrawell prediction limit of 398 mg/L. Compared to the value of 804 mg/L in the June 2022 sample, the sulfate concentration increased by 9%. The Mann-Kendal statistic of 137 exceeded the critical value of 68 indicating a significant increasing trend at the 98% confidence level. The sulfate increasing was consistent with the TDS increasing, which indicated that more salts were dissoved into groundwater. It could be caused by the acidic geochemistry condition discussed above or an anthropogenic source since sulfate is soluble in soils and can get into groundwater via surface water infiltration. Another potential reseaon is the naturally occurrence of sulfide minerals in the soil, such as pyrite. The oxidation of sulfide minerals will slowly release sulfate and hydrogen ion into groundwater, which will lead to the increasing of sulfate and decreasing of pH. To further investigate this hypothesis, the analysis of ORP is recommended for MW-111S in the next sampling event.
- Based on review of potentiometric surface mapping and locations of closed portions of the CADL, and the CCR Unit relative to MW-111S, MW-111S may monitor groundwater associated with the pre-CCR Rule closed portions of the CADL rather than the CCR Unit;

- therefore, concentrations measured in MW-111S may be more reflective of pre-CCR Rule disposal rather than of the CCR Unit.
- Surface water that has come into contact with on-site CCR at the CCR Unit has migrated from the perimeter drainage swale for the CCR Unit due to periodic build-up of sediment within the perimeter surface water swale. When this build-up occurs, surface water flows out of the swale and over the adjoining access road and then to the area of MW-111S. This drainage swale carries surface water runoff from closed portions of the CADL as well as from the CCR Unit. This surface water ultimately migrates from the MW-111S area via surface water swales within the ADEQ-permitted CADL footprint, with ultimate discharge into the site surge pond as per Entergy's NPDES permit. Based on the close proximity of this surface water to MW-111S, it appears likely that surface water infiltration may have impacted the MW-111S monitoring results.

3.13 pH at MW-111S

The pH SSI identified at MW-111S is a result of natural groundwater geochemistry condition, potential oxidation of sulfide minerals, potential impact of CCR disposed at the CADL prior to October 19, 2015, and potential infiltration of surface water impacted by on-site CCR into the subsurface in the area of MW-111S. The following evidence supports this determination:

- pH was detected in MW-111S at a value of 3.71 in the December 2022 sample, which exceeded the intrawell prediction limit of 3.9 to 6. No significant increasing trend was observed by the Mann-Kendal statistic model. The acidic groundwater condition and elevated sulfate concentration indicated that there might be rich sulfide mineral such as pyrite in the surrounding soils. The oxidation of sulfide minerals will slowly release sulfate and hydrogen ion into groundwater, which will lead to the increasing of sulfate and decreasing of pH.
- Based on review of potentiometric surface mapping and locations of closed portions of the CADL, and the CCR Unit relative to MW-111S, MW-111S may monitor groundwater associated with the pre-CCR Rule closed portions of the CADL rather than the CCR Unit; therefore, concentrations measured in MW-111S may be more reflective of pre-CCR Rule disposal rather than of the CCR Unit.
- Surface water that has come into contact with on-site CCR at the CCR Unit has migrated from the perimeter drainage swale for the CCR Unit due to periodic build-up of sediment within the perimeter surface water swale. When this build-up occurs, surface water flows out of the swale and over the adjoining access road and then to the area of MW-111S. This drainage swale carries surface water runoff from closed portions of the CADL as well as from the CCR Unit. This surface water ultimately migrates from the MW-111S area via surface water swales within the ADEQ-permitted CADL footprint, with ultimate discharge into the site surge pond as per Entergy's NPDES permit. Based on the close proximity of this surface water to MW-111S, it appears likely that surface water infiltration may have impacted the MW-111S monitoring results.

3.14 TDS at MW-111S

The TDS SSI identified at MW-111S is a result of the acidic groundwater geochemistry conditions with natural occurrence of sulfide minerals, sodium sulfate source, the potential impact of CCR disposed at the CADL prior to October 19, 2015 and potential infiltration of surface water impacted by on-site CCR into the subsurface in the area of MW-111S. The following evidence supports this determination:

- TDS was detected in MW-111S at a concentration of 1,270 mg/L in the December 2022 sample, which exceeded the intrawell prediction limit of 541 mg/L. Compared to the value of 1,230 mg/L in the June 2022 sample, the TDS concentration was consistent. The Mann-Kendal statistic of 150 exceeded the critical value of 68 indicating a significant increasing trend at the 98% confidence level. As discussed in Section 2.2, the Jackson Group groundwater is sodium-and calcium-sulfate water type. Sodium could be another main contribution to the TDS exceedance with the increasing of calcium and sulfate. High sodium concentration can also cause the fluoride exceedance. The acidic groundwater could be one of the potential reasons. An alternate source containing sodium sulfate should also be considered, which can be mineral dissolution, surface water flux or atmospheric deposition.
- Based on review of potentiometric surface mapping, locations of closed portions of the CADL, and the CCR Unit relative to MW-111S, MW-111S may monitor groundwater associated with the pre-CCR Rule closed portions of the CADL rather than the CCR Unit. Therefore, concentrations measured in MW-111S may be more reflective of pre-CCR Rule disposal rather than of the Unit.
- Surface water that has come into contact with on-site CCR at the CCR Unit has migrated from the perimeter drainage swale for the CCR Unit due to periodic build-up of sediment within the perimeter surface water swale. When this build-up occurs, surface water flows out of the swale and over the adjoining access road and then to the area of MW-111S. This drainage swale carries surface water runoff from closed portions of the CADL as well as from the CCR Unit. This surface water ultimately migrates from the MW-111S area via surface water swales within the ADEQ-permitted CADL footprint, with ultimate discharge into the site surge pond as per Entergy's NPDES permit. Based on the close proximity of this surface water to MW-111S, it appears likely that surface water infiltration may have impacted the MW-111S monitoring results.

3.15 Boron at MW-112D

The boron SSI identified at MW-112D is a result of natural variation in groundwater quality and potential impact of CCR disposed at the CADL prior to October 19, 2015. The following evidence supports this determination:

■ Boron was detected in MW-112D at a concentration of 0.278 mg/L in the December 2022 sample, which was consistent with 0.278 mg/L in the June 2022 sample. This concentration

exceeds the intrawell prediction limit of 0.252 mg/L. Boron concentrations measured at MW-118D (background well for Stratum III) have ranged from 0.274 to 0.355 mg/L. Therefore, the boron exceedance at MW-112D is within the range of variation in background groundwater quality and is not a potential environmental concern.

- Based on review of potentiometric surface mapping, locations of closed portions of the CADL, and the CCR Unit relative to MW-112D, MW-112D is located immediately adjacent (approximately 25 feet) to historic fill, but approximately 950 feet from the CCR Unit. Therefore, the concentrations of boron measured in MW-112D may be more reflective of pre-CCR Rule disposal rather than of the CCR Unit.
- Groundwater flow velocities are estimated to be approximately <1 ft/year to 10 ft/year (TRC 2018a). Since, MW-112D is located approximately 950 feet from the CCR unit, any release from the CCR Unit would be detected in Stratum III at MW-112D within approximately 95 years, which is significantly longer than the CCR Unit has been in operation. Therefore, the concentration of boron at MW-112D likely represents either potential pre-CCR Rule migration from historic fill or background groundwater quality for Stratum III.</p>

3.16 Calcium at MW-112D

The calcium SSI identified at MW-112D is a result of natural variation in groundwater quality and potential impact of CCR disposed at the CADL prior to October 19, 2015. The following evidence supports this determination:

- Calcium was detected in MW-112D at a concentration of 39.3 mg/L in the December 2022 sample, which was consistent with 37 mg/L in the June 2022 sample. This concentration exceeds the intrawell prediction limit of 23.8 mg/L. The Mann-Kendal statistic of 137 exceeded the critical value of 68 indicating a significant increasing trend at the 98% confidence level. A pH value of 7.15 was detected at in the December 2022 sample and the historical data review shows MW-112D area has a netural pH condition in groundwater. The relatively low TDS indicated that EC in groundwater is not a factor to the calcium exceedance. Calcium concentrations measured at MW-118D (background well for Stratum III) have ranged from 68.4 to 83.2 mg/L. Therefore, the calcium exceedance at MW-112D is within the range of variation in background groundwater quality and is not a potential environmental concern.
- Based on review of potentiometric surface mapping, locations of historic fill, locations of closed portions of the CADL, and the CCR Unit relative to MW-112D, MW-112D is located immediately adjacent (approximately 25 feet) to historic fill, but approximately 950 feet from the CCR Unit. Therefore, the concentrations of calcium measured in MW-112D may be more reflective of pre-CCR Rule disposal rather than of the CCR Unit.
- As discussed previously, groundwater flow velocities are estimated to be approximately <1 ft/year to 10 ft/year (TRC 2018a). Since, MW-112D is located approximately 950 feet from the

CCR Unit, any release from the CCR Unit would be detected in Stratum III at MW-112D within approximately 95 years, which is significantly longer than the CCR Unit has been in operation. Therefore, the concentration of calcium at MW-112D likely represents either potential pre-CCR Rule migration from historic fill or background groundwater quality for Stratum III.

3.17 TDS at MW-112D

The TDS SSI identified at MW-112D is a result of natural variation in groundwater quality and potential impact of CCR disposed at the CADL prior to October 19, 2015. The following evidence supports this determination:

- TDS was detected in MW-112D at a concentration of 302 mg/L in the December 2022 sample, which exceeded the intrawell prediction limit of 205 mg/L. Compared to the value of 270 mg/L in the June 2022 sample, the TDS concentration decreased by 12%. TDS concentrations measured at MW-118D (background well for Stratum III) have ranged from 415 to 484 mg/L. A review of groundwater parameters in Stratum III indicates that sulfate is a great contributor to TDS and the sulfte concentration at MW-112D is very low (less than 5 mg/L). Therefore, the TDS exceedance at MW-112D is within the range of variation in background groundwater quality and is not a potential environmental concern.
- Based on review of potentiometric surface mapping, locations of historic fill, locations of closed portions of the CADL, and the CCR Unit relative to MW-112D, MW-112D is located immediately adjacent (approximately 25 feet) to historic fill, but approximately 950 feet from the CCR Unit. Therefore, the concentrations of TDS measured in MW-112D may be more reflective of pre-CCR Rule disposal rather than of the CCR Unit.
- As discussed previously, groundwater flow velocities are estimated to be approximately <1 ft/year to 10 ft/year (TRC 2018a). Since, MW-112D is located approximately 950 feet from the CCR unit, any release from the CCR Unit would be detected in Stratum III at MW-112D within approximately 95 years, which is significantly longer than the CCR Unit has been in operation. Therefore, the concentration of TDS at MW-112D likely represents either potential pre-CCR Rule migration from the historic fill or background groundwater quality for Stratum III.

3.18 Calcium at MW-114D

The calcium SSI identified at MW-114D is a result of natural variation in groundwater quality. The following evidence supports this determination:

Calcium was detected in MW-114D at a concentration of 52.1 mg/L in the December 2022 sample, which was consistent with 53.1 mg/L in the June 2022 sample. This concentration exceeds the intrawell prediction limit of 50.8 mg/L. A pH value of 7.8 was detected at in the

December 2022 sample and the historical data review shows MW-114D area has a netural pH condition in groundwater. Calcium concentrations measured at MW-118D (background well for Stratum III) have ranged from 68.4 to 103 mg/L. Therefore, the calcium exceedance at MW-114D is within the range of variation in background groundwater quality and is not a potential environmental concern.

- Based on review of potentiometric surface mapping, locations of closed portions of the CADL, and the CCR Unit relative to MW-114D, MW-114D is located 950 feet from the CCR Unit. Therefore, the concentrations of calcium measured in MW-114D may be more reflective of background natural water quality rather than of the CCR Unit.
- As discussed previously, groundwater flow velocities in Stratum III are estimated to be approximately <1 ft/year to 10 ft/year (TRC 2018a). Since, MW-114D is located approximately 950 feet from the CCR Unit, any release from the pre-CCR Rule closed portions of the CADL or the CCR Unit would be detected in Stratum III at MW-114D within approximately 95 years, which is significantly longer than either the CADL or the CCR Unit has been in operation. Therefore, the concentration of calcium at MW-114D likely represents background natural groundwater quality for Stratum III.

3.19 TDS at MW-114D

The TDS SSI identified at MW-114D is a result of natural variation in groundwater quality. The following evidence supports this determination:

- TDS was detected in MW-114D at a concentration of 331 mg/L in the December 2022 sample, which exceeded the intrawell prediction limit of 322 mg/L. Compared to the value of 319 mg/L in the June 2022 sample, the TDS concentration was consistent. TDS concentrations measured at MW-118D (background well for Stratum III) have ranged from 415 to 642 mg/L. Therefore, the TDS exceedance at MW-114D is within the range of variation in background groundwater quality and is not a potential environmental concern.
- Based on review of potentiometric surface mapping, locations of closed portions of the CADL, and the CCR Unit relative to MW-114D, MW-114D is located 950 feet from the CCR Unit. Therefore, the concentrations of TDS measured in MW-114D may be more reflective of background natural water quality rather than of the CCR Unit.
- As discussed previously, groundwater flow velocities in Stratum III are estimated to be approximately <1 ft/year to 10 ft/year (TRC 2018a). Since, MW-114D is located approximately 950 feet from the CCR Unit, any release from the pre-CCR Rule closed portions of the CADL or the CCR Unit would be detected in Stratum III at MW-114D within approximately 95 years, which is significantly longer than either the CADL or the CCR Unit has been in operation. Therefore, the concentration of calcium at MW-114D likely represents background natural groundwater quality for Stratum III.

3.20 TDS at MW-118D

The TDS SSI identified at MW-118D is a result of natural variation in groundwater quality. The following evidence supports this determination:

- TDS was detected in MW-118D at a concentration of 557 mg/L in the December 2022 sample, which exceeded the intrawell prediction limit of 545 mg/L. Compared to the value of 585 mg/L in the June 2022 sample, the TDS concentration decreased by 5%. MW-118D is one of the Stratum III background monitoring wells. The TDS exceedance at MW-118D is within the range of variation in background groundwater quality and is not a potential environmental concern.
- Based on review of potentiometric surface mapping, locations of closed portions of the CADL, and the CCR Unit relative to MW-118D, MW-118D is located 1800 feet from the CCR Unit. Therefore, the concentrations of TDS measured in MW-118D may be more reflective of background natural water quality rather than of the CCR Unit.
- As discussed previously, groundwater flow velocities in Stratum III are estimated to be approximately <1 ft/year to 10 ft/year (TRC 2018a). Since, MW-118D is located approximately 1800 feet from the CCR Unit, any release from the pre-CCR Rule closed portions of the CADL or the CCR Unit would be detected in Stratum III at MW-118D within approximately 180 years, which is significantly longer than either the CADL or the CCR Unit has been in operation. Therefore, the concentration of calcium at MW-118D likely represents background natural groundwater quality for Stratum III.

Section 4 Conclusions

The information provided in this report serves as the ASD prepared in accordance with 40 CFR 257.94(e)(2) of the CCR Rule. Statistical evaluation identified 20 potential SSIs in five monitoring wells in Startums I and three monitoring wells in Strartums III. This ASD has demonstrated the following lines of reasoning that support alternative sources for the identified SSIs:

- Low pH detected in Startums I indicated the acidic groundwater geochemistry conditions in MW-106S, MW-110S and MW-111S. The 12 SSIs identified in Startums I are related to the naurtal groundwater geochemistry conditions, such as low pH, high electrical conductivity, potential presence of sulfide minerals in soils and relatively high oxidation-reduction potential.
- The 2 SSIs detected in MW-102S and MW-103S could be a result of analytical errors. The monitoring data in next sampling event will be used as confirmation.
- The 6 SSIs identified in Startums III are mostly within the natural variation in groundwater quality compared to MW-118D, which likely represents background natural groundwater quality for Stratum III due to its location to CCR Unit and groundwater flow velocities.
- Releases from historic fill or portions of the CADL closed before the effective date of the CCR Rule (October 19, 2015); and/or
- Surface water that has come into contact with on-site CCR and has migrated into the subsurface.

Therefore, the SSIs determined based on statistical analysis of the 2nd Half 2022 semiannual detection monitoring event performed in December of 2022 are not due to a release from the CCR Unit to Stratums I and III of the Jackson Group.Based on the information provided in this ASD report, Entergy will continue to conduct semiannual detection monitoring in accordance with 40 CFR 257.94 at the Certified Monitoring Well Network for the CCR Unit.

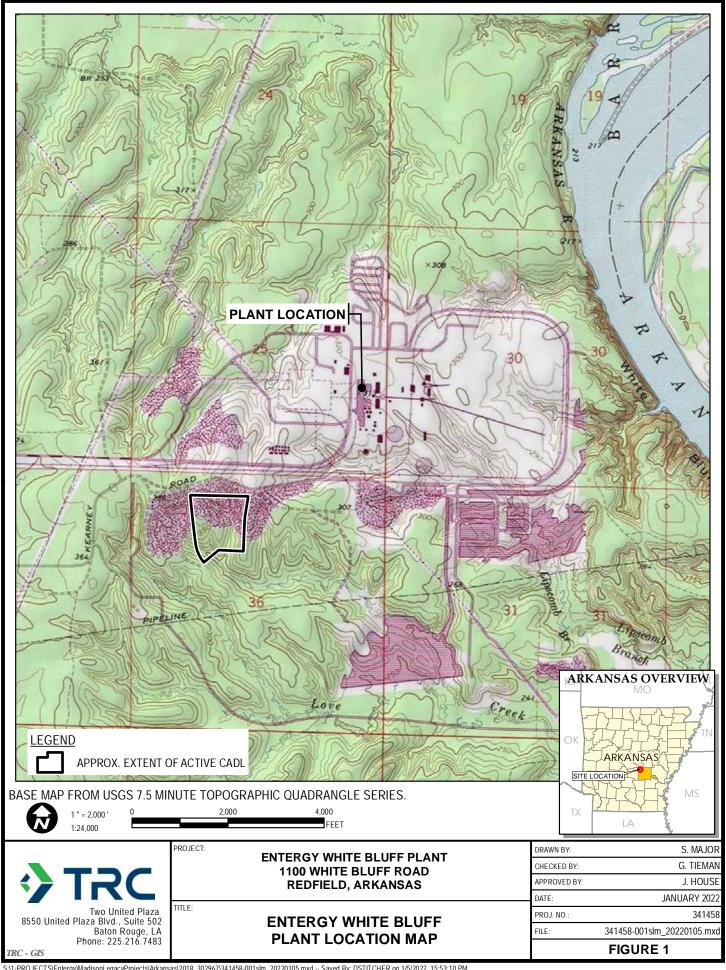
Section 5 Certification

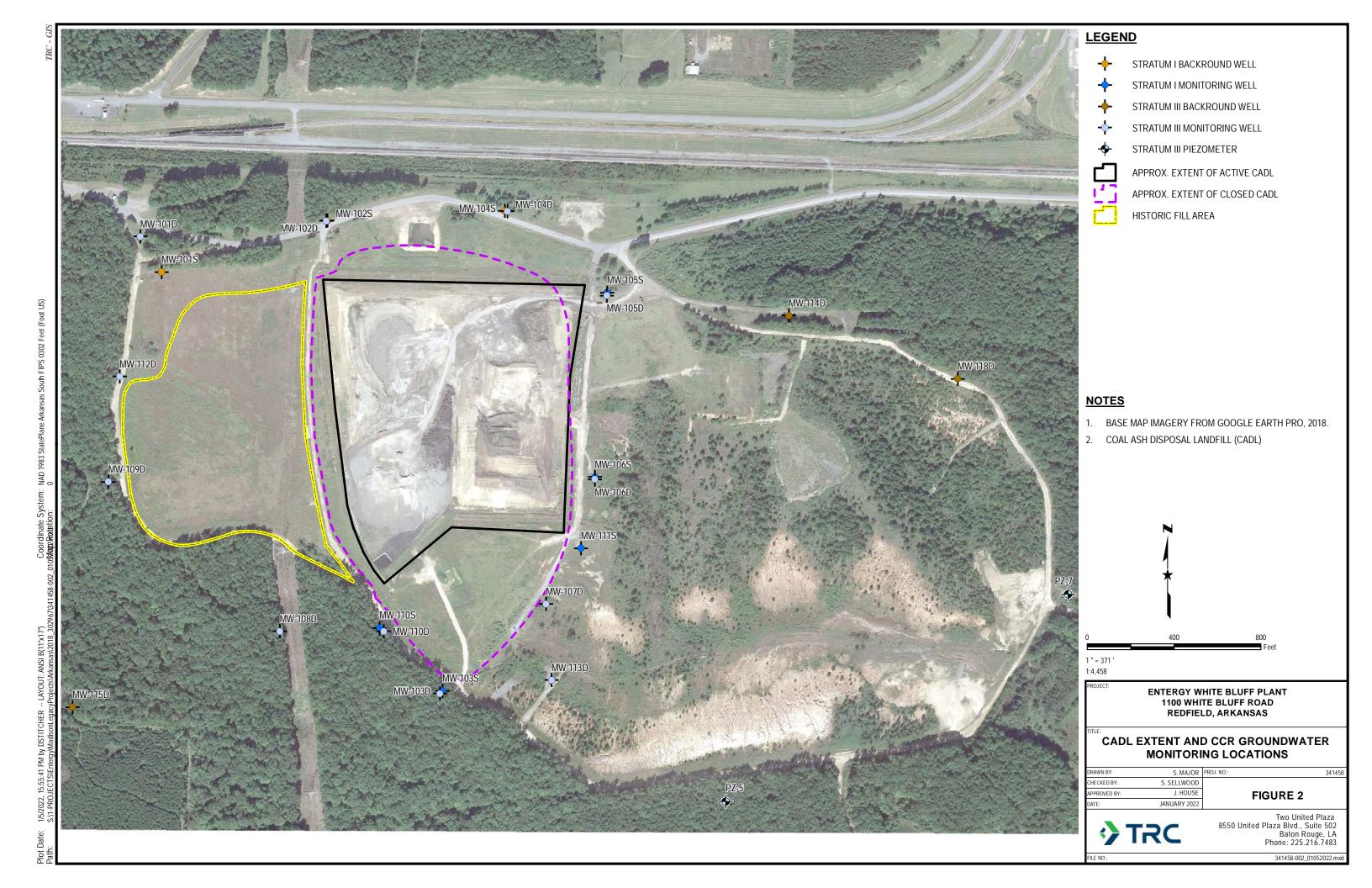
I hereby certify that the alternative source demonstration presented within this document for the Entergy White Bluff Plant Coal Ash Disposal Landfill CCR Unit has been prepared to meet the requirements of Title 40 CFR §257.94(e) 2 of the Federal CCR Rule. This document is accurate and has been prepared in accordance with good engineering practices, including the consideration of applicable industry standards, and with the requirements of Title 40 CFR §257.94(e) 2.

Name: Michael J. Amstadt P.E	Expiration Date: <u>12/31/2023</u>
------------------------------	--

Company: TRC Environmental Corporation Date: 7/6/2023

(SEAL)


Section 6 References


- Atekwana, E. A., Atekwana, E. A., Rowe, R. S., Werkema, D. D., & Legall, F. D. (2004). The relationship of total dissolved solids measurements to bulk electrical conductivity in an aquifer contaminated with hydrocarbon. Journal of Applied Geophysics, 56(4), 281–294.
- Banadkooki, F. B., Ehteram, M., Panahi, F., Sh. Sammen, S., Othman, F. B., & EL-Shafie, A. (2020). Estimation of total dissolved solids (TDS) using new hybrid machine learning models. Journal of Hydrology, 587(February), 124989.
- Brindha, K., & Elango, L. (2011). Fluoride in groundwater: Causes, implications and mitigation measures. Fluoride: Properties, Applications and Environmental Management, 113–136.
- Chen, Q., Jia, C., Wei, J., Dong, F., Yang, W., Hao, D., Jia, Z., & Ji, Y. (2020). Geochemical process of groundwater fluoride evolution along global coastal plains: Evidence from the comparison in seawater intrusion area and soil salinization area. Chemical Geology, 552(July), 119779.
- Einsiedl, F., & Mayer, B. (2005). Sources and Processes Affecting Sulfate in a Karstic Groundwater System of the Franconian Alb, Southern Germany. Environmental Science & Technology, 39(18), 7118–7125.
- FTN. 2014. Supplemental Geotechnical and Hydrogeological Investigation Report, Entergy White Bluff Plant Class 3N Landfill. Prepared for Entergy Arkansas, Inc. Little Rock, AR: FTN Associates, Ltd. October 1, 2014.
- FTN. 2017a. Statistical Analysis Plan, Entergy White Bluff Plant. Little Rock, AR: FTN Associates, Ltd.
- FTN. 2017b. Groundwater Sampling and Analysis Plan, Entergy White Bluff Landfill. Little Rock, AR: FTN Associates, LTD.
- Guo, H., Zhang, Y., Xing, L., & Jia, Y. (2012). Spatial variation in arsenic and fluoride concentrations of shallow groundwater from the town of Shahai in the Hetao basin, Inner Mongolia. Applied Geochemistry, 27(11), 2187–2196.
- Hájek, M., Jiménez-Alfaro, B., Hájek, O., Brancaleoni, L., Cantonati, M., Carbognani, M., Dedić, A., Díte, D., Gerdol, R., Hájková, P., Horsáková, V., Jansen, F., Kamberović, J., Kapfer, J., Kolari, T. H. M., Lamentowicz, M., Lazarević, P., Mašić, E., Moeslund, J. E., ...

- Horsák, M. (2021). A European map of groundwater pH and calcium. Earth System Science Data, 13(3), 1089–1105.
- Hollis, J. F., Keren, R., & Gal, M. (1988). Boron Release and Sorption by Fly Ash as Affected by pH and Particle Size. Journal of Environmental Quality, 17(2), 181–184.
- Jiang, Y., Wu, Y., Groves, C., Yuan, D., & Kambesis, P. (2009). Natural and anthropogenic factors affecting the groundwater quality in the Nandong karst underground river system in Yunan, China. Journal of Contaminant Hydrology, 109(1–4), 49–61.
- Keren, R., & Communar, G. (2009). Boron Sorption on Wastewater Dissolved Organic Matter: pH Effect. Soil Science Society of America Journal, 73(6), 2021–2025.
- Kimambo, V., Bhattacharya, P., Mtalo, F., Mtamba, J., & Ahmad, A. (2019). Fluoride occurrence in groundwater systems at global scale and status of defluoridation State of the art. Groundwater for Sustainable Development, 9(August 2018), 100223.
- Kresse, T.M., P.D. Hays, K.R. Merriman, J.A. Gillip, D.T. Fugitt, J.L. Spellman, A.M. Nottmeier, D.A. Westerman, J.M. Blackstock, and J.L. Battreal. 2014. Aquifers of Arkansas—Protection, Management, and Hydrologic and Geochemical Characteristics of Groundwater Resources in Arkansas [USGS Scientific Investigations Report 2014–5149]. Prepared in Cooperation with the Arkansas Natural Resources Commission. Reston, VA: US Geological Survey. 334 pp.
- Luo, W., Gao, X., & Zhang, X. (2018). Geochemical processes controlling the groundwater chemistry and fluoride contamination in the yuncheng basin, China—an area with complex hydrogeochemical conditions. PLoS ONE, 13(7).
- MDH. (2008). Sulfate in well water. In Minnesota Department of Health, Well Management Section, Environmental Health Division.
- Miao, Z., Brusseau, M. L., Carroll, K. C., Carreón-Diazconti, C., & Johnson, B. (2012). Sulfate reduction in groundwater: Characterization and applications for remediation. Environmental Geochemistry and Health, 34(4), 539–550.
- Mondal, D., Gupta, S., Reddy, D. V., & Nagabhushanam, P. (2014). Geochemical controls on fluoride concentrations in groundwater from alluvial aquifers of the Birbhum district, West Bengal, India. Journal of Geochemical Exploration, 145, 190–206.
- Olumuyiwa I. Ojo,. (2012). Groundwater: Characteristics, qualities, pollutions and treatments: An overview. International Journal of Water Resources and Environmental Engineering, 4(6), 162–170.

- Palmucci, W., & Rusi, S. (2014). Boron-rich groundwater in Central Eastern Italy: a hydrogeochemical and statistical approach to define origin and distribution. Environmental Earth Sciences, 72(12), 5139–5157.
- Poursaeid, M., Mastouri, R., Shabanlou, S., & Najarchi, M. (2020). Estimation of total dissolved solids, electrical conductivity, salinity and groundwater levels using novel learning machines. Environmental Earth Sciences, 79(19), 1–25.
- Pu, J., Yuan, D., Zhang, C., & Zhao, H. (2012). Hydrogeochemistry and possible sulfate sources in karst groundwater in Chongqing, China. Environmental Earth Sciences 2012 68:1, 68(1), 159–168.
- Ravenscroft, P., & McArthur, J. M. (2004). Mechanism of regional enrichment of groundwater by boron: the examples of Bangladesh and Michigan, USA. Applied Geochemistry, 19(9), 1413–1430.
- Razowska-jaworek, L. (2014). Calcium and Magnesium in Groundwater. In Calcium and Magnesium in Groundwater.
- Saxena, V., & Ahmed, S. (2001). Dissolution of fluoride in groundwater: a water-rock interaction study. Environmental Geology, 40(9), 1084–1087.
- Schot, P. P., & Wassen, M. J. (1993). Calcium concentrations in wetland groundwater in relation to water sources and soil conditions in the recharge area. Journal of Hydrology, 141(1–4), 197–217.
- Shi, X., Wang, Y., Jiao, J. J., Zhong, J., Wen, H., & Dong, R. (2018). Assessing major factors affecting shallow groundwater geochemical evolution in a highly urbanized coastal area of Shenzhen City, China. Journal of Geochemical Exploration, 184, 17–27.
- Tabelin, C. B., Hashimoto, A., Igarashi, T., & Yoneda, T. (2014). Leaching of boron, arsenic and selenium from sedimentary rocks: II. pH dependence, speciation and mechanisms of release. Science of The Total Environment, 473–474, 244–253.
- TRC. 2017. Statistical Methods Certification, White Bluff Steam Electric Generating Station, Redfield, Arkansas. Prepared for Entergy Arkansas Inc. Baton Rouge: TRC Environmental Corporation.
- TRC. 2018a. Site Conceptual Model: Entergy White Bluff Plant Coal Ash Disposal Landfill, Redfield, Jefferson County, Arkansas. January 2018.

- TRC. 2018b. Groundwater Monitoring System Certification, White Bluff Steam Electric Generating Station, Redfield, Arkansas. Prepared for Entergy Arkansas Inc. Baton Rouge: TRC Environmental Corporation.
- Upadhyaya, D., Survaiya, M. D., Basha, S., Mandal, S. K., Thorat, R. B., Haldar, S., Goel, S., Dave, H., Baxi, K., Trivedi, R. H., & Mody, K. H. (2014). Occurrence and distribution of selected heavy metals and boron in groundwater of the Gulf of Khambhat region, Gujarat, India. Environmental Science and Pollution Research, 21(5), 3880–3890.
- USEPA. (2008). Drinking Water Health Advisory For Boron. Office of Water U.S. Environmental Protection Agency Washington, DC, 822-R-08–0.
- United States Environmental Protection Agency. 2017. Secondary Drinking Water Standards: Guidance for Nuisance Chemicals, March 8, 2017.
- WHO. (2008). Guidelines for Drinking Water Quality, third ed. World Health Organization, Geneva.

Alternate Source Demonstration

1st Half 2023 Sampling Event

Entergy White Bluff Plant Coal Ash Disposal Landfill Redfield, Jefferson County, Arkansas

October 2023

Prepared For Entergy Arkansas, LLC White Bluff Plant 1100 White Bluff Road Redfield, Arkansas 72132

Jason S. House

Senior Project Manager

Executive Summary

Entergy Arkansas, LLC (Entergy) performed the most recent semiannual detection monitoring sampling (1st Half 2023) in June 2023 for Cells 1 through 4 of the coal ash disposal landfill (CADL) pursuant to the *Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule*, 40 CFR Part 257 (CCR Rule). Cells 1 through 4 of the CADL constitute the coal combustion residuals (CCR) Unit per the CCR Rule. Per 40 CFR 257.94, the samples were analyzed for the Appendix III detection monitoring parameters. Upon receipt of the laboratory analytical results, statistical analysis was performed.

In accordance with the statistical analyses, the following 15 statistically significant increases (SSI) above background concentrations were identified in three monitoring wells in Stratum I and three monitoring wells in Stratum III, based on either increasing trends at 98% confidence levels using Sen's Slope test and/or intrawell prediction limits statistical analyses:

- Calcium, fluoride, sulfate and TDS (MW-106S);
- Boron (MW-110S);
- Boron, calcium, fluoride, sulfate, and TDS (MW-111S);
- Boron, calcium, and TDS (MW-112D);
- TDS (MW-114D); and
- TDS (MW-118D).

The information provided in this report serves as Entergy's alternate source demonstration (ASD) prepared in accordance with 40 CFR 257.94(e)(2) and successfully demonstrates that the SSIs are not due to a release from the CCR Unit to groundwater, but are due to the following:

- Natural groundwater geochemistry conditions such as pH, electrical conductivity (EC), oxidationreduction potential (ORP) and the naturally occurrence of sulfide minerals;
- Natural variation in groundwater quality;
- Releases from historic fill or portions of the CADL closed before the effective date of the CCR Rule (October 19, 2015); and/or
- Surface water that has come into contact with on-site CCR and has migrated into the subsurface.

Therefore, based on the information provided in this ASD report, Entergy will continue to conduct semiannual detection monitoring for Appendix III constituents in accordance with 40 CFR 257.94 at the certified groundwater monitoring well system (Certified Monitoring Well Network) for the CCR Unit and will continue to implement improvements to stormwater management practices at the CADL.

Table of Contents

Executive Summary		
Section 1 l	Introduction	1-1
1.1	Background	1-1
	1.1.1 Groundwater Monitoring and Statistical Analysis	
1.2	Purpose	
Section 2 l	Hydrogeology and Geochemistry	2-1
2.1	Site Hydrogeology	2-1
2.2	General Groundwater Quality	2-2
2.3	Groundwater Geochemistry	2-3
	2.3.1 Boron in Groundwater	2-3
	2.3.2 Fluoride in Groundwater	2-4
	2.3.3 Sulfate in Groundwater	2-5
	2.3.4 Calcium in Groundwater	2-5
	2.3.5 TDS in Groundwater	2-6
	2.3.6 pH in Groundwater	2-6
Section 3	Alternate Source Demonstration	3-1
3.1	pH Values Across the Site	3-3
3.2	Calcium at MW-106S	3-3
3.3	Fluoride at MW-106S	3-4
3.4	Sulfate at MW-106S	3-5
3.5	TDS at MW-106S	3-6
3.6	Boron at MW-110S	3-7
3.7	Boron at MW-111S	3-7
3.8	Calcium at MW-111S	3-8
3.9	Fluoride at MW-111S	3-9
3.10	Sulfate at MW-111S	3-10
3.11	TDS at MW-111S	3-11
3.12	2 Boron at MW-112D	3-12
3.13	3 Calcium at MW-112D	3-12
3.14	TDS at MW-112D	3-13
3.15	5 TDS at MW-114D	3-14
3.16	5 TDS at MW-118D	3-14

Section 4 Conclusions	4-1
Section 5 Certification	5-1
Section 6 References	6-1

List of Figures

Figure 1 Site Location Map

Figure 2 CADL Extent and CCR Groundwater Monitoring Locations

Section 1 Introduction

1.1 Background

Entergy Arkansas, LLC (Entergy) operates the Entergy White Bluff Plant (Plant), a coal-fired power plant, to generate electricity. The Plant is located at 1100 White Bluff Road in Redfield, Jefferson County, Arkansas as shown on Figure 1. Coal combustion residuals (CCR) are produced as part of the electrical generation operations. The Plant has been generating and disposing of CCR in a portion of the on-site coal ash disposal landfill (CADL) since it began operations in 1981. The CADL is a Class 3N non-commercial industrial landfill and operates under Arkansas Division of Environmental Quality (ADEQ) Solid Waste Permit No. 0199-S3N-R3.

The ADEQ-permitted CADL consists of approximately 153-acres at the Plant and encompasses the following three areas:

- Approximately 50-acre portion of the CADL historically used for CCR disposal from 1981 until prior to the effective date of the CCR Rule (October 19, 2015). CCR was placed into ravines. This area was closed in accordance with the Plant's original solid waste permit (TRC, 2018a);
- Cells 1 through 4, which are the current cells used for CCR disposal and were constructed on top of, and adjacent to, the above-noted closed CCR disposal areas prior to the effective date of the CCR Rule. Cells 1 through 4 encompass approximately 30 acres and were constructed as follows:
 - Cells 1, 2, and 3 were constructed with an 18-inch thick compacted clay bottom liner;
 - Cell 4 was constructed with a two-foot thick compacted clay bottom liner and a leachate collection system; and
- Approximately 100-acre portion of the CADL that is currently undeveloped and may be used for CCR and/or non-CCR disposal.

In addition to the current 153-acre permitted landfill, there is an approximately 25 acre area to the immediate west of Cells 1 through 4 where during the initial period of operation of the Plant, ash was placed pursuant to the permits issued at that time. This historic fill area is covered with soil and vegetated.

Cells 1 through 4 accept CCR for disposal in accordance with the federal *Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule* (CCR Rule), effective October 19, 2015, and subsequent Final Rules promulgated by the United States

Environmental Protection Agency (USEPA). Cells 1 through 4 comprise the CCR management unit (CCR Unit) per the CCR Rule and are the focus of this ASD. The approximate limits of Cells 1 through 4, the closed disposal areas, and the undeveloped, future disposal areas within the ADEQ-permitted footprint of the CADL are shown in Figure 2.

Historical CCR management by Entergy has consisted of the following activities:

- Beneficial use in local construction projects;
- Beneficial use as roadbed material at the CADL; and
- Placement into the CADL.

1.1.1 Groundwater Monitoring and Statistical Analysis

In accordance with 40 CFR 257.90 through 257.94, Entergy installed a groundwater monitoring system for Cells 1 through 4 and has collected samples from the Certified Monitoring Well Network for laboratory analysis for CCR constituents and performed statistical analysis of the collected samples. Entergy installed a Certified Monitoring Well Network for the CCR Unit in accordance with 40 CFR 257.90 and 257.91. The Certified Monitoring Well Network consists of 23 wells installed into two stratigraphic units as follows:

- Eight wells are installed into an upper silty and clayey sand unit (Stratum I), which are designated as "S" monitoring wells; and
- Fifteen wells are installed into a lower silty and clayey sand and clay unit (Stratum III), which are designated as "D" monitoring wells.

Pursuant to 40 CFR 257.91(f), Entergy obtained certification by a qualified Arkansas-registered professional engineer (P.E.) stating that the Certified Monitoring Well Network has been designed and constructed to meet the requirements of 40 CFR 257.91 (see Groundwater Monitoring System Certification, TRC, February 26, 2018) of the CCR Rule (TRC 2018b).

As discussed above, Stratum I and Stratum III are currently being monitored pursuant to the CCR Rule. A groundwater sampling and analysis program including selection of statistical procedures to evaluate groundwater data was prepared per the CCR Rule (see Groundwater Sampling and Analysis Plan (FTN, 2017b)). Eight quarterly background CCR detection monitoring events were performed from October 2015 through June 2017 in accordance with 40 CFR 257.93(d) and 257.94(b). The eight quarterly detection monitoring background samples were analyzed for Appendix III to Part 257 – Constituents for Detection Monitoring and for Appendix IV to Part 257 – Constituents for Assessment Monitoring.

Following completion of quarterly background detection monitoring in June 2017, Entergy implemented semiannual detection monitoring per 40 CFR 257.94(b) for the CCR Unit. The first semiannual detection monitoring event was performed in August 2017 (2nd Half 2017). Subsequent detection monitoring events, with associated verification sampling when appropriate, have been performed on a semiannual basis since August 2017. Entergy performed the most recent semiannual detection monitoring event (1st Half 2023) in June 2023. Per the CCR Rule, the semiannual detection monitoring event samples were analyzed for Appendix III constituents.

After completion of each semiannual detection monitoring event, the Appendix III laboratory analytical data were statistically evaluated to identify potential SSIs for Appendix III constituents above background levels. In accordance with 40 CFR 257.93(f)(6), Entergy obtained certification by a qualified Arkansas-registered P.E. stating that the selected statistical method is appropriate for evaluating the groundwater monitoring data for the CCR Unit (see Statistical Methods Certification, TRC, October 16, 2017).

Pursuant to 40 CFR 257.93(h), statistical analysis and re-analysis of the laboratory analytical data were performed to identify potential SSIs for the 1st Half 2023 semiannual detection monitoring event. A total of 15 SSIs were identified for five Appendix III constituents: boron, calcium, fluoride, sulfate, and TDS. SSIs were identified in three Stratum I and three Stratum III monitoring wells.

1.2 Purpose

Pursuant to 40 CFR 257.94(e)(2), Entergy may demonstrate that a source other than the CCR Unit caused the SSIs identified or that the SSIs resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The purpose of this report is to provide written documentation of the successful ASD for the SSIs identified for the 1st Half 2023 semiannual detection monitoring event, pursuant to 40 CFR 257.94(e)(2) of the CCR Rule.

Section 2

Hydrogeology and Geochemistry

2.1 Site Hydrogeology

Historical subsurface investigations have identified the following three stratigraphic horizons of the Jackson Group (Kresse, et. al., 2014) and their associated hydrogeology for the CCR Unit and the CADL:

■ Stratum 1. Interbedded Clay, Silt, and Sand.

Stratum 1 ranges from approximately 10 to 54-feet thick and consists of interbedded silty sand (SM), clayey sand (SC), silts (ML and MH), and clay (CL and CH). Occasional deposits of carbonaceous material are present throughout Stratum 1. Based on the results of in-situ slug tests, hydraulic conductivity values range from 4.0×10^{-5} to 4.0×10^{-4} cm/sec;

■ Stratum 2. Clay.

Stratum 2 ranges from approximately 14 to 49-feet thick and consists of a very stiff clay (CH) with occasional silt and/or very fine-grained sand laminations. Occasional deposits of carbonaceous mater are present throughout Stratum 2. Based on the results of in-situ slug tests, hydraulic conductivity values range from 4.7×10^{-6} to 1.4×10^{-8} cm/sec;

■ Stratum 3. Clayey and Silty Sand.

Stratum 3 ranges from approximately 5 to 19-feet thick and consists primarily of clayey sand (SC) and/or silty sand (SM). A poorly graded, fine-grained sand (SM) was identified in one piezometer. The upper limits of Stratum 3 were encountered at elevations of 263 to 289-feet NGVD (depths ranging from 19 to 97-feet bgs). Based on results of in-situ slug tests, hydraulic conductivity was determined to be spatially variable and ranged from 4.2×10^{-7} to 2.5×10^{-4} cm/sec; and

Underlying Clay.

A clay unit underlies Stratum 3 and is described as a very dark grey clay that is highly laminated with light grey silt and very fined-grained sand. Based on results of an insitu slug test, the vertical hydraulic conductivity was 3.7×10^{-8} cm/sec.

It was concluded that Stratum 1 was not laterally continuous across the approximately 153-acre landfill. The estimated calculated seepage velocities in Stratums 1 and 3 were as follows:

■ Stratum 1: 2 to 20 feet/year; and

Stratum 3: <1 to 10 feet/year.

While Stratum I and Stratum III have been monitored per the CCR Rule since October 2015, it is unclear whether Stratum I and Stratum III are aquifers that are capable of providing sustainable well yields consistent with USEPA aquifer use criteria (*e.g.*, 0.1 gallons per minute). This uncertainty is based on the following evidence:

- Stratum I is present to the west of the CADL and only present within the western portion of the ADEQ-permitted boundaries of the CADL, approximately corresponding to the boundaries of the closed portions of the CADL. The CCR Unit and Stratum I are not continuous to the east across the entire footprint of the CADL;
- In-situ hydraulic conductivities are low to very low for both Stratum I and Stratum III, indicating that sustainable well yields may not be obtainable from Stratum I and Stratum III at volumes that meet the minimum USEPA well use criteria (e.g., 0.1 gallons per minute); and
- During the quarterly and semiannual detection monitoring events performed from October 2015 through December 2021, which have been performed using the low-flow purge and sample methodology, the sampling teams have consistently documented that turbidity values are often greater than 10 Nephelometric Turbidity Units (NTU). Furthermore, wells have been pumped dry during sampling for both Stratum I and Stratum III, indicating that neither sustainable well yields nor useable drinking water are associated with Stratum I and Stratum III.

To evaluate this uncertainty, Entergy began performing hydrogeologic investigations during 2019 and 2020, continuing through 2021 to evaluate both the stratigraphy and hydrogeology beneath the CCR Unit and to identify the aquifer(s) making up the uppermost aquifer system at the CCR Unit and CADL and the appropriateness of the current Certified Monitioring Well Network.

2.2 General Groundwater Quality

Regionally, groundwater quality in the Jackson Group consists of a sodium- and calcium-sulfate water type, with generally poor water quality (FTN 2014, Kresse et. al 2014). Reported water quality concentrations for select secondary drinking water contaminants compared to USEPA secondary maximum contaminant levels (MCLs) are provided in the table below.

Jackson Group Groundwater Water Quality

	Concentration Range		USEPA	
Constituent	Low	High	Secondary MCL	
Iron (mg/L)	0.05	19	0.3	
pH (s.u.)	2.9	8.0	6.5 - 8.5	
Sulfate (mg/L)	0.6	3,080	250	
TDS (mg/L)	11	5,330	500	

As noted in the table above, the natural range of groundwater quality within the Jackson Group, which includes both Stratum I and Stratum III, exceeds the secondary drinking water MCLs established by the USEPA for drinking water or, in the case of pH, is less than its secondary MCL. Finally, the results of historical groundwater monitoring at the Plant conducted from 1991 through 1996 showed that normal indicator parameters were masked by naturally elevated concentrations of the monitored constituents (FTN 2014, TRC 2018a).

2.3 Groundwater Geochemistry

Understanding the geochemistry of groundwater is essential to examining the groundwater monitoring data, explaining the relationships between the characteristics, and analyzing natural as well as anthropogenic impacts on groundwater systems. Source apart, geochemical processes play an important role in controlling the chemical composition of groundwater, including carbonate equilibrium, oxidation-reduction reactions and adsorption-desorption processes. Based the site geological conditions, several groundwater parameters are discussed as follows, including boron, fluoride, sulfate, calcium, TDS and pH.

2.3.1 Boron in Groundwater

Boron in normally considered as a minor constituent in groundwater as it is generally present in low concentrations (Palmucci & Rusi, 2014). Source apart, the primary origin of boron in groundwater is the process of sorption and desorption to the mineral surfaces including rocks and soils (Ravenscroft & McArthur, 2004). The regulatory guideline values of boron in drinking water are given at 0.5 mg/L by WHO and 0.9 mg/L by USEPA in human consumption for long-term exposure (WHO, 2008; USEPA, 2008). Boron is often cited as contamination tracer and usually occurs as a non-ionized form as H₃BO₃ in soils at pH<8.5, but above this pH, it exists as an anion, B(OH)₄. (Upadhyaya et al., 2014).

The factors that may influence the boron concentration in groundwater include weathering, human activity, evaporative concentration, ion-exchange, electrical conductivity (EC), and pH. Ravenscroft & McArthur (2004) studied the mechanism of regional boron enrichment groundwater and the results indicated that the main process caused high boron enriched in groundwater was the flushing by fresh groundwater other than geolofical setting, climate or age. The desorption of Boron from mineral surfaces could be affected by pH, ionic strength, salinity and HCO₃/CO₃. Decreasing of pH will increase the dissolution of boron from the mineral surfaces. Boron adsorption favors high pH and boron desorption favors low pH on rocks, soils and organic matters (Hollis et al., 1988; Keren & Communar, 2009; Tabelin et al., 2014).

A few more research studies confirmed that the presence of boron in groundwater depends on the EC (salinity), such that it increases with increasing EC. Halim et al. (2010) reported that the increasing of Cl⁻ concentration contributes to increase in EC value since a strong linear correlation (R^2 = 0.88) between EC and Cl⁻ was observed. Palmucci & Rusi (2014) observed a clear correlation between the high concentrations of boron and the chloride-sodium facies, which are characterized by high saline content, negative redox potential, and low value of the SO₄²-/Cl⁻ ratio. Rodriguez-Espinosa et al. (2020) found that the Boron concentration in groundwater was related to the SO₄²- and age affect.

Regarding to the Boron concentration level on the sites, the main source of Boron is more natural than anthropogenic. Therefore, the detected increasing of Boron concentration is likely due to the geochemistry condition changes, such as pH, ion exchanges, EC and salinity.

2.3.2 Fluoride in Groundwater

The common natural source of fluoride in groundwater is the dissolution of natural fluoride-bearing mineral, such as fluorspar, fluorapatite, amphiboles, hornblende, tremolite and biotite (Luo et al., 2018). The natural concentration of fluoride in groundwater depends on the geological, chemical and physical characteristics of the aquifer, the porosity and acidity of the soil and rocks, the surrounding temperature, the action of other chemical elements, depth of the aquifer and intensity of weathering (Brindha & Elango, 2011). Due to the concentration range of this site, geochemical process is the main factor controlling fluoride in groundwater.

Ion exchange, evaporation, adsorption-desorption, ion competition, mixing, salinization and anthropogenic pollution are geochemical processes that can take place and cause the occurrence of fluoride in groundwater (Luo et al., 2018). Main factors that might cause the increase of fluoride concentration in groundwater include alkaline pH, high concentration of sodium and bicarbonate, and low concentration of calcium.

Alkaline pH can increase the fluoride dissolution from mineral surfaces into groundwater. Saxena & Ahmed (2001) observed that alkaline conditions with pH ranging between 7.6 and 8.6 are favorable for dissolution of fluorite mineral from the host rocks.

Sodium bicarbonate type waters are typical of high fluoride waters. Many research studies have demonstrated positive correlations between fluoride and both bicarbonate and sodium as well as an inverse relation between fluoride and calcium. (Mondal et al., 2014; Guo et al., 2012; Chen et al., 2020). The chemical reactions for the dissolution of fluoride in the presence of high bicarbonate and sodium, and low calcium content is described as follows (Kimambo et al., 2019):

$$Na^{+} + +HCO_{3}^{-} - \rightarrow NaHCO_{3}$$

$$CaF_{2} + +2NaHCO_{3} \rightarrow CaCO_{3} + 2Na^{+} + 2F^{-} + H_{2}O + CO_{2}$$

Luo et al. (2018) reported that cation exchange can increase the fluoride concentration when increasing the Na/Ca molar ratio via ion complexation, and salt effect can further increase the fluoride dissolution from mineral surfaces.

In addition, evaporation is another potential reason to increase the fluoride concentration in shallow groundwater. Evaporation could directly remove water from shallow aquifers and elevate the fluoride concentration. Evaporation could increase ion concentrations, leading to the precipitation of some major minerals, reducing the calcium concentration, and favoring the dissolution of fluoride. Anthropogenic sources may also increase the fluoride in groundwater, such as pesticide and fertilizer use, and industrial waste discharge.

2.3.3 Sulfate in Groundwater

Sulfate is ubiquitous in groundwater, with both natural and anthropogenic sources. There are many potential sources of sulfate including mineral dissolution, atmospheric deposition, and other anthropogenic sources (mining, fertilizer, synthetic detergents, industrial wastewater etc.) (Miao et al., 2012). As water moves through soil and rock formations that contain sulfate minerals, some of the sulfate dissolves into the groundwater. Minerals that contain sulfate include magnesium sulfate (Epsom salt), sodium sulfate (Glauber's salt), and calcium sulfate (gypsum). Gypsum is an important contributor to the high levels of sulphate in many aquifers of the world. Higher levels of sulfate in groundwater are common in the western part of the United States (MDH, 2008).

Sulfate is mobile in soil and inputs to soil will impact groundwater eventually. Many research studies indicated that atmospheric deposition, dissolution of gypsum, oxidation of sulfide mineral and anthropogenic inputs will contribute to sulfate. Based on the geological condition of the site, atmospheric deposition and anthropogenic activities could be the main factors (Einsiedl & Mayer, 2005; Pu et al., 2012).

2.3.4 Calcium in Groundwater

Calcium is one of the most important ionic constituents in groundwater (Razowska-jaworek, 2014). Water-rock interaction occurs when water meets rocks or minerals, limestone, marble, calcite, dolomite, gypsum, fluorite and apatite. Natural dissolution of carbonate rocks and minerals is the primary source of calcium in groundwater (Jiang et al., 2009). Calcium is an important determinant of water hardness (Ca²⁺), while magnesium is the other hardness determinant. The most common shallow groundwater type is Ca-HCO₃ dominated and Ca(Mg)-HCO₃ dominated.

A literature review indicates the major factors that may influence the calcium concentration in groundwater include rock weathering, pH, electrical conductivity and anthropogenic activities (mining, concrete material dissolution, fertilizer etc.) (Hájek et al., 2021; Schot & Wassen, 1993; Shi et al., 2018). Based on the geological condition of the site, pH, electrical conductivity and anthropogenic activities could be the potential reasons for the calcium SSI.

2.3.5 TDS in Groundwater

Total dissolved solids represent the combined total of inorganic and organic substances contained in the groundwater, and it can be a general indicator of water quality. These solids are primarily minerals, salts, and organic matters, which may originate from sources such as weathering of minerals, urban runoff, sewage, effluent discharges, agricultural, decaying organisms, and other human activities (de-icing roads, water softer use). Common salts that contribute to TDS are sodium, chloride, calcium, magnesium, potassium, sulfates, and bicarbonates (Olumuyiwa I. Ojo, 2012).

TDS levels in groundwater is usually higher than surface water due to the longer contact time with the underlying rocks and sediments. Since many minerals are water soluble, high concentrations can accumulate over time through the constantly reoccurring process of precipitation and evaporation.

TDS is related to other water quality parameters like hardness, which may occur if the high TDS content is due to the presence of carbonates. A few research studies simulated the relationship between TDS and other groundwater parameters such as EC and salinity, using different models. Due to the complicated geological conditions, the observation was not consistent at different study sites (Atekwana et al., 2004; Banadkooki et al., 2020; Poursaeid et al., 2020).

2.3.6 pH in Groundwater

Groundwater pH is an important aspect to consider in the monitoring and management of CCR landfill sites, as changes in pH can affect the quality of groundwater and the potential for release of contaminants. The potential reasons for pH changes in groundwater are as following:

- Changes in water flow patterns. Changes in the flow patterns of groundwater can cause
 the mixing of different water sources with varying pH levels, resulting in an overall
 increase in the pH of the groundwater at the site.
- Drainage from adjacent areas. Groundwater from adjacent areas with higher pH levels
 may be flowing into the landfill site and raising the overall pH of the groundwater at the
 site.
- Changes in geochemistry condition. Geochemistry can play a role in affecting the pH of groundwater at a landfill site, such as mineral dissolution, pH buffering capacity, redox

reactions, and groundwater-rock interactions (Edmunds & Smedley, 1996; Wilkin & DiGiulio, 2010).

- 1) Mineral dissolution. Minerals present in the surrounding soil can dissolve and release basic or acidic compounds into the groundwater, affecting the pH, e.g., the dissolution of calcium carbonate can increase the pH of the groundwater by releasing carbonate ions, the dissolution and oxidation of pyrite can decrease the pH of groundwater by releasing hydrogen ions.
- 2) pH buffering capacity. The presence of minerals with a high buffering capacity in the surrounding soil can help to regulate the pH of the groundwater, preventing drastic changes in response to other factors. For example, the presence of minerals like calcite and dolomite can buffer the groundwater pH, helping to maintain a relatively stable pH even in the presence of acidic compounds.
- 3) Redox reactions. The oxidation-reduction reactions that occur in the surrounding soil can impact the pH of the groundwater. The oxidation of iron-sulfide minerals can result in the release of sulfuric acid, which can lower the pH of groundwater. The oxidation of reduced sulfur species to sulfate, which can increase the pH of groundwater (Jacks, 2017).
- 4) Groundwater-rock interactions. The interaction between groundwater and the rocks and minerals in the surrounding soil can affect the pH of the groundwater. For example, groundwater can dissolve or release basic or acidic compounds from the minerals in the rock, affecting the pH.

Section 3 Alternate Source Demonstration

Pursuant to 40 CFR 257.94(e)(2), Entergy may demonstrate that a source other than the CCR Unit caused the SSI or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. As discussed previously, the 1st Half 2023 semiannual detection monitoring event was performed in June 2023. Statistical analysis of the 1st Half 2023 semiannual detection monitoring data was performed pursuant to 40 CFR 257.93(f) and (g) and in accordance with the Statistical Methods Certification (TRC 2017b) and the Statistical Analysis Plan (FTN 2017a). Based on either increasing trends at 98% confidence levels using Sen's Slope test and/or intrawell prediction limits statistical analyses, the following 15 SSIs were identified and summarized in Table 1:

- Calcium, fluoride, sulfate and TDS (MW-106S);
- Boron (MW-110S);
- Boron, calcium, fluoride, sulfate, and TDS (MW-111S);
- Boron, calcium, and TDS (MW-112D);
- TDS (MW-114D); and
- TDS (MW-118D).

Other Appendix III constituent concentrations were within their trends at 98% confidence levels using Sen's slope test and/or intrawell prediction limits in the CCR Rule groundwater monitoring system wells.

A discussion for each of the individual SSIs identified for the Stratum I and III wells and associated evidence demonstrating that the 15 SSIs were not caused by a release from the CCR Unit is provided in the subsections below.

Table 1 SSIs – June 2023 Semiannual Detection Monitoring Event

Stratum	Well	Analyte	Value (mg/L)	Intrawell Prediction Limit (mg/L)	SI by Sen's Slope test
	MW-106S	Calcium	46.8	23.8	Y
		Fluoride	0.728	0.625	Y
		Sulfate	808	603.5	Y
		TDS	1200	827.1	Y
_	MW-110S	Boron	2.24	1.586	Y
I		Boron	5.98	4.495	Y
	MW-111S	Calcium	118	36.76	Y
		Fluoride	0.85	0.2834	Y
		Sulfate	854	397.5	Y
		TDS	1,270	540.7	Y
	MW-112D	Boron	0.287	0.2521	N
		Calcium	39.5	23.8	Y
III		TDS	308	204.9	Y
	MW-114D	TDS	326	322	N
	MW-118D	TDS	566	544.5	N

3.1 pH Values Across the Site

During the June 2023 sampling event, notably low pH values were recorded across the site, especially in the Stratum III monitoring wells. Ten pH values were below the intrawell prediction limit range at the monitoring wells of MW-102S (4.28), MW-104S (5.0), MW-101D (1.55), MW-102D (3.68), MW-103D (5.13), MW-107D (1.75), MW-108D (5.01), MW-109D (3.84), MW-110D (6.92) and MW-118D (5.4). At this juncture, it is imperative to consider the possibility that these extreme pH values may be attributed to field dection instrument inaccuracies or potential sampling errors rather than indicative of contamination sources. To draw more definitive conclusions regarding the true state of the site, it is recommended that more than one pH detectors will be employed in the next sampling event and the results will serve to confirm whether the low pH readings are consistent and replicable, or if they were indeed an anomaly caused by technical issues.

3.2 Calcium at MW-106S

The calcium SSI identified at MW-106S is a result of the acidic geochemistry condition in groundwater, potential impact of CCR disposed at the CADL prior to October 19, 2015, and potential infiltration of surface water impacted by on-site CCR into the subsurface in the area of MW-106S. The following evidence supports this determination:

- Calcium was detected in MW-106S at a concentration of 46.8 mg/L in the June 2023 sample. Compared to the value of 31.6 mg/L in the December 2022 sample, the calcium concentration increased approximately 48%. The Mann-Kendal statistic of 153 exceeded the critical value of 73 indicating a significant increasing trend at the 98% confidence level. As discussed in Section 2.3, pH and EC could affect calcium concentrations in groundwater. Low pH values of 3.8-4.0 were detected in the past few years, which indicates the groundwater in this area is acidic and it was related to pre-CCR Rule disposal source or natural geochemistry conditions. The acidic groundwater condition favors the dissolution of calcium from soil and mineral surfaces to water phase. The significant increasing trend of calcium from 16 mg/L in 2015 to 46.8 mg/L in 2023 could be a result of the acidic geochemistry condition. The increasing cation and anion concentrations will also lead to the increasing EC, which will affect other metals dissolution.
- The concentrations of calcium in MW-101S, which is a background well, have varied from 14 to 98.5 mg/L during the overall time period of CCR detection monitoring. The calcium concentration of 98.5 mg/L for MW-101S is greater than the calcium concentration of 46.8 mg/L measured at MW-106S during the 1st Half 2023 semiannual detection monitoring event. Therefore, the calcium concentration measured at MW-106S is within the range of natural variation in background groundwater quality.
- Based on review of potentiometric surface mapping, locations of closed portions of the CADL underlying the CCR Unit, and the CCR Unit relative to MW-106S, it appears that MW-106S

- may monitor groundwater associated with the underlying pre-CCR Rule closed portions of the CADL rather than the CCR Unit; therefore, concentrations measured in MW-106S are likely more reflective of pre-CCR Rule disposal rather than of the CCR Unit.
- Surface water that has come into contact with on-site CCR at the CCR Unit has migrated from the perimeter drainage swale for the CCR Unit due to periodic build-up of sediment within the perimeter surface water swale. When this build-up occurs, surface water flows out of the swale and over the adjoining access road and then to the area of MW-106S. This drainage swale carries surface water runoff from closed portions of the CADL as well as from the CCR Unit. This surface water ultimately migrates from the MW-106S area via surface water swales within the ADEQ-permitted CADL footprint, with ultimate discharge into the site surge pond as per Entergy's NPDES permit. Based on the close proximity of this surface water to MW-106S, it appears likely that surface water infiltration may have impacted the MW-106S monitoring results.

3.3 Fluoride at MW-106S

The fluoride SSI identified at MW-106S is a result of groundwater geochemistry conditions, potential impact of CCR disposed at the CADL prior to October 19, 2015, and potential infiltration of surface water impacted by on-site CCR into the subsurface in the area of MW-106S. The following evidence supports this determination:

- Fluoride was detected in MW-106S at a concentration of 0.728 mg/L in the June 2023 sample. Compared to the value of 0.803 mg/L in the December 2022 sample, the calcium concentration decreased by 10%. The Mann-Kendal statistic of 127 exceeded the critical value of 73 indicating a significant increasing trend at the 98% confidence level. This concentration exceeded the intrawell prediction limit of 0.625 mg/L and the maximum fluoride concentrations of 0.1 to 0.135 mg/L measured in the three Stratum I background monitoring wells (MW-101S, MW-102S, and MW-104S). However, it should be noted that the measured fluoride concentrations are less than the federal primary drinking water maximum contaminant level (MCL) standard of 4.0 mg/L.
- The fluoride concentration in MW-106S stayed in a narrow range of 0.6-0.68 mg/L in the past two years. pH of the groundwater is not an impact of the exceedance since fluoride dissolution favors alkaline pH. As discussed in Section 2.3, fluoride has positive correlation with both bicarbonate and sodium, and an inverse relation with calcium. With the increasing trend of calcium in the groundwater, ion exchange process with high sodium and bicarbonate can result in the increasing of fluoride in groundwater.
- Based on review of potentiometric surface mapping, locations of closed portions of the CADL underlying the CCR Unit, and the CCR Unit relative to MW-106S, it appears that MW-106S may monitor groundwater associated with the underlying pre-CCR Rule closed portions of

- the CADL rather than the CCR Unit; therefore, concentrations measured in MW-106S may be more reflective of pre-CCR Rule disposal rather than of the CCR Unit.
- Surface water that has come into contact with on-site CCR at the CCR Unit has migrated from the perimeter drainage swale for the CCR Unit due to periodic build-up of sediment within the perimeter surface water swale. When this build-up occurs, surface water flows out of the swale and over the adjoining access road and then to the area of MW-106S. This drainage swale carries surface water runoff from closed portions of the CADL as well as from the CCR Unit. This surface water ultimately migrates from the MW-106S area via surface water swales within the ADEQ-permitted CADL footprint, with ultimate discharge into the site surge pond as per Entergy's NPDES permit. Based on the close proximity of this surface water to MW-106S, it appears likely that surface water infiltration may have impacted the MW-106S monitoring results.

3.4 Sulfate at MW-106S

The sulfate SSI identified at MW-106S is a result of natural geochemistry condition in soil and groundwater, potential impact of CCR disposed at the CADL prior to October 19, 2015, and potential infiltration of surface water impacted by on-site CCR into the subsurface in the area of MW-106S. The following evidence supports this determination:

- Sulfate was detected in MW-106S at a concentration of 808 mg/L in the June 2023 sample, which exceeded the intrawell prediction limit of 604 mg/L. The Mann-Kendal statistic of 142 exceeded the critical value of 73 indicating a significant increasing trend at the 98% confidence level. The increasing trend of sulfate was consistent with TDS. The elevated sulfate concentrion in the past three years could be caused by the acidic geochemistry condition discussed above or an anthropogenic source since sulfate is mobile in soils and can get into groundwater via surface water infiltration. Another potential reseaon is the natural occurrence of sulfide minerals in the soil, such as pyrite. The oxidation of sulfide minerals will slowly release sulfate and hydrogen ion into groundwater, which will lead to the increasing of sulfate and decreasing of pH.
- Surface water that has come into contact with on-site CCR at the CCR Unit has migrated from the perimeter drainage swale for the CCR Unit due to periodic build-up of sediment within the perimeter surface water swale. When this build-up occurs, surface water flows out of the swale and over the adjoining access road and then to the area of MW-106S. This drainage swale carries surface water runoff from closed portions of the CADL as well as from the CCR Unit. This surface water ultimately migrates from the MW-106S area via surface water swales within the ADEQ-permitted CADL footprint, with ultimate discharge into the site surge pond as per Entergy's NPDES permit. Based on the close proximity of this surface water to MW-106S, it appears likely that surface water infiltration may have impacted the MW-106S monitoring results.

Based on review of potentiometric surface mapping and locations of closed portions of the CADL, and the CCR Unit relative to MW-106S, MW-106S may monitor groundwater associated with the pre-CCR Rule closed portions of the CADL rather than the CCR unit; therefore, concentrations measured in MW-106S may be more reflective of pre-CCR Rule disposal rather than of the CCR Unit.

3.5 TDS at MW-106S

The TDS SSI identified at MW-106S is a result of the acidic groundwater geochemistry condition, sodium sulfate source, potential impact of CCR disposed at the CADL prior to October 19, 2015, and potential infiltration of surface water impacted by on-site CCR into the subsurface in the area of MW-106S. The following evidence supports this determination:

- TDS was detected in MW-106S at a concentration of 1,200 mg/L in the June 2023 sample, which exceeded the intrawell prediction limit of 827 mg/L. The Mann-Kendal statistic of 136 exceeded the critical value of 73 indicating a significant increasing trend at the 98% confidence level. Compared to the value of 979 mg/L in the December 2022 sample, 920 mg/L in the June 2022 sample and 1090 mg/L in the November 2021 sample, the TDS was stable. As discussed in Section 2.2, the Jackson Group groundwater is sodium- and calcium-sulfate water type. Sodium could be another main contribution to the TDS exceedance with calcium and sulfate. High sodium concentration can also cause the fluoride exceedance. The acidic groundwater could be one of the potential reasons. An alternate source containing sodium sulfate should also be considered, which can be mineral dissolution, surface water flux or atmospheric deposition.
- Based on review of potentiometric surface mapping, locations of closed portions of the CADL, and the CCR Unit relative to MW-106S, MW-106S may monitor groundwater associated with the pre-CCR Rule closed portions of the CADL rather than the CCR Unit. Therefore, concentrations measured in MW-106S may be more reflective of pre-CCR Rule disposal rather than of the CCR Unit.
- Surface water that has come into contact with on-site CCR at the CCR Unit has migrated from the perimeter drainage swale for the CCR Unit due to periodic build-up of sediment within the perimeter surface water swale. When this build-up occurs, surface water flows out of the swale and over the adjoining access road and then to the area of MW-106S. This drainage swale carries surface water runoff from closed portions of the CADL as well as from the CCR Unit. This surface water ultimately migrates from the MW-106S area via surface water swales within the ADEQ-permitted CADL footprint, with ultimate discharge into the site surge pond as per Entergy's NPDES permit. Based on the close proximity of this surface water to MW-106S, it appears likely that surface water infiltration may be impacting the MW-106S monitoring results.

3.6 Boron at MW-110S

The Boron SSI identified at MW-110S is a result of the acidic groundwater geochemistry condition and potential impact of CCR disposed at the CADL prior to October 19, 2015. The following evidence supports this determination:

- Boron was detected in MW-110S at a concentration of 2.24 mg/L in the June 2023 sample, which exceeded the intrawell prediction limit of 1.586 mg/L. Compared to the value of 2.03 mg/L in the December 2022 sample, the boron concentration was consistent. The Mann-Kendal statistic of 155 exceeded the critical value of 73 indicating a significant increasing trend at the 98% confidence level. As discussed in Section 2.3, the main factors that may influence boron concentration in groundwater are pH and EC. Decreasing of pH will increase the dissolution of boron from the mineral surfaces. Boron in groundwater will increase with the increasing of EC. The historical data review shows the relatively low salts concentrations in MW-110S area, which indicates EC is not the factor causing the boron increasing trend. A low pH value of 4.16 was detected in the June 2023 sample. The acidic groundwater condition favors the boron dissolution from soil and mineral surface. Based on the consistent boron levels in groundwater, the significant increasing trend of boron is more likely relative to the acidic geochemistry condition other than a contamination source.
- Based on review of potentiometric surface mapping, locations of historic fill, locations of closed portions of the CADL underlying the CCR Unit, and the CCR Unit relative to MW-110S, it appears that MW-110S may monitor groundwater associated with the underlying pre-CCR Rule closed portions of the CADL rather than the CCR Unit; therefore, concentrations measured in MW-110S may be more reflective of pre-CCR Rule disposal rather than of the CCR Unit.

3.7 Boron at MW-111S

The boron SSI identified at MW-111S is a result of natural groundwater geochemistry conditions with low pH and high EC, potential impact of CCR disposed at the CADL prior to October 19, 2015, and potential infiltration of surface water impacted by on-site CCR into the subsurface in the area of MW-111S. The following evidence supports this determination:

Boron was detected in MW-111S at a concentration of 5.98 mg/L in the June 2023 sample, which exceeded the intrawell prediction limit of 4.495 mg/L. Compared to the value of 6.26 mg/L in the December 2022 sample, the boron concentration was consistent. The Mann-Kendal statistic of 145 exceeded the critical value of 73 indicating a significant increasing trend at the 98% confidence level. As discussed in Section 2.3, the main factors that may influence boron concentration in groundwater are pH and EC. Decreasing of pH will increase the dissolution of boron from the mineral surfaces. Boron in groundwater will increase with the increasing of EC. A low pH value of 3.98 was detected in the June 2023 sample and the pH of groundwater in the area of MW-111S stayed in a steady range of 3.6 to 4.5 in the past

five years. The acidic groundwater condition favors the boron dissolution from soil and mineral surface. The increasing sulfate and TDS in MW-111S demonstrates that the groundwater in this area has relatively high EC, which will cause the increasing of boron concentration in groundwater. Based on the consistent boron levels, the significant increasing trend of boron is more likely relative to the geochemistry conditions with low pH and high EC other than a contamination source.

- Based on review of potentiometric surface mapping and locations of closed portions of the CADL, and the CCR Unit relative to MW-111S, MW-111S may monitor groundwater associated with the pre-CCR Rule closed portions of the CADL rather than the CCR Unit. Therefore, concentrations measured in MW-111S may be more reflective of pre-CCR Rule disposal rather than of the CCR Unit.
- Surface water that has come into contact with on-site CCR at the CCR Unit has migrated from the perimeter drainage swale for the CCR Unit due to periodic build-up of sediment within the perimeter surface water swale. When this build-up occurs, surface water flows out of the swale and over the adjoining access road and then to the area of MW-111S. This drainage swale carries surface water runoff from closed portions of the CADL as well as from the CCR Unit. This surface water ultimately migrates from the MW-111S area via surface water swales within the ADEQ-permitted CADL footprint, with ultimate discharge into the site surge pond as per Entergy's NPDES permit. Based on the close proximity of this surface water to MW-111S, it appears likely that surface water infiltration may be impacting the MW-111S monitoring results.

3.8 Calcium at MW-111S

The calcium SSI identified at MW-111S is a result of natural groundwater geochemistry conditions with low pH and high EC, potential impact of CCR disposed at the CADL prior to October 19, 2015, and potential infiltration of surface water impacted by on-site CCR into the subsurface in the area of MW-111S. The following evidence supports this determination:

Calcium was detected in MW-111S at a concentration of 118 mg/L in the June 2023 sample, which exceeded the intrawell prediction limit of 36.8 mg/L. Compared to the value of 112 mg/L in the December 2022 sample, the calcium concentration was consistent. Normality analysis of the calcium data set at MW-111S was non-normal requiring trend analysis of the data set to determine a potential significance increase. The Mann-Kendal statistic of 162 exceeded the critical value of 73 indicating a significant increasing trend at the 98% confidence level. As discussed in Section 2.3, pH and EC could affect calcium concentrations in groundwater. A low pH value of 3.98 was detected in the June 2023 sample and the pH of groundwater in the area of MW-111S stayed in a steady range of 3.6 to 4.5 in the past five years. The acidic condition favors the dissolution of calcium from soil and mineral surfaces to water phase. The relatively high EC in groundwater discussed above can also increase the calcium concentration. The significant increasing trend of calcium could be a result of the natural geochemistry conditions with low pH and high EC.

- Background concentrations of calcium have varied from 14 to 98.5 mg/L at upgradient monitoring well MW-101S. The calcium concentration of 118 mg/L at MW-111S during the 1st Half 2023 semiannual detection monitoring event is beyond but close to the top background concnetration. Therefore, the calcium exceedance is still in the range of natural variation in background groundwater quality.
- Based on review of potentiometric surface mapping, locations of closed portions of the CADL, and the CCR Unit relative to MW-111S, MW-111S may monitor groundwater associated with the underlying pre-CCR Rule closed portions of the CADL rather than the CCR Unit. Therefore, concentrations measured in MW-111S may be more reflective of pre-CCR Rule disposal rather than of the CCR Unit.
- Surface water that has come into contact with on-site CCR at the CCR Unit has migrated from the perimeter drainage swale for the CCR Unit due to periodic build-up of sediment within the perimeter surface water swale. When this build-up occurs, surface water flows out of the swale and over the adjoining access road and then to the area of MW-111S. This drainage swale carries surface water runoff from closed portions of the CADL as well as from the CCR Unit. This surface water ultimately migrates from the MW-111S area via surface water swales within the ADEQ-permitted CADL footprint, with ultimate discharge into the site surge pond as per Entergy's NPDES permit. Based on the close proximity of this surface water to MW-111S, it appears likely that surface water infiltration may have impacted the MW-111S monitoring results.

3.9 Fluoride at MW-111S

The fluoride SSI identified at MW-111S is a result of natural groundwater geochemistry conditions, potential impact of CCR disposed at the CADL prior to October 19, 2015 and potential infiltration of surface water impacted by on-site CCR into the subsurface in the area of MW-111S. The following evidence supports this determination:

Fluoride was detected in MW-111S at a concentration of 0.85 mg/L in the June 2023 sample, which exceeded the intrawell prediction limit of 0.283 mg/L and the maximum fluoride concentrations of 0.1 to 0.135 mg/L measured in the three Stratum I background monitoring wells (MW-101S, MW-102S, and MW-104S). Compared to the value of 1.2 mg/L in the December 2022 sample, the fluoride concentration decreased by 29%. The Mann-Kendal statistic of 162 exceeded the critical value of 73 indicating a significant increasing trend at the 98% confidence level. However, it should be noted that the measured fluoride concentrations are less than the federal primary drinking water MCL of 4.0 mg/L. pH of the groundwater is not an impact of the exceedance since fluoride dissoluction favors alkaline pH. As discussed in Section 2.3, fluoride has positive correlation with both bicarbonate and sodium, and an inverse relation with calcium. With the increasing trend of calcium in the groundwater, ion exchange process with high sodium and bicarbonate can result in the increasing of fluoride in groundwater. The fluoride increasing trend could also be a result of continouse dissoved salts from the soils and minerals associated with the increased TDS.

- Based on review of potentiometric surface mapping, locations of closed portions of the CADL, and the CCR Unit relative to MW-111S, MW-111S may monitor groundwater associated with the pre-CCR Rule closed portions of the CADL rather than the CCR Unit. Therefore, concentrations measured in MW-111S may be more reflective of pre-CCR Rule disposal rather than of the CCR Unit.
- Surface water that has come into contact with on-site CCR at the CCR Unit has migrated from the perimeter drainage swale for the CCR Unit due to periodic build-up of sediment within the perimeter surface water swale. When this build-up occurs, surface water flows out of the swale and over the adjoining access road and then to the area of MW-111S. This drainage swale carries surface water runoff from closed portions of the CADL as well as from the CCR Unit. This surface water ultimately migrates from the MW-111S area via surface water swales within the ADEQ-permitted CADL footprint, with ultimate discharge into the site surge pond as per Entergy's NPDES permit. Based on the close proximity of this surface water to MW-111S, it appears likely that surface water infiltration may have impacted the MW-111S monitoring results.

3.10 Sulfate at MW-111S

The sulfate SSI identified at MW-111S is a result of natural groundwater geochemistry condition of low pH and potential oxidation of sulfide minerals, potential impact of CCR disposed at the CADL prior to October 19, 2015, and potential infiltration of surface water impacted by on-site CCR into the subsurface in the area of MW-111S. The following evidence supports this determination:

- Sulfate was detected in MW-111S at a concentration of 854 mg/L in the June 2023 sample, which exceeded the intrawell prediction limit of 398 mg/L. Compared to the value of 879 mg/L in the December 2022 sample, the sulfate concentration was consistent. The Mann-Kendal statistic of 154 exceeded the critical value of 73 indicating a significant increasing trend at the 98% confidence level. The sulfate increasing was consistent with the TDS increasing, which indicated that more salts were dissoved into groundwater. It could be caused by the acidic geochemistry condition discussed above or an anthropogenic source since sulfate is soluble in soils and can get into groundwater via surface water infiltration. Another potential reseaon is the naturally occurrence of sulfide minerals in the soil, such as pyrite. The oxidation of sulfide minerals will slowly release sulfate and hydrogen ion into groundwater, which will lead to the increasing of sulfate and decreasing of pH. To further investigate this hypothesis, the analysis of ORP is recommended for MW-111S in the next sampling event.
- Based on review of potentiometric surface mapping and locations of closed portions of the CADL, and the CCR Unit relative to MW-111S, MW-111S may monitor groundwater associated with the pre-CCR Rule closed portions of the CADL rather than the CCR Unit;

- therefore, concentrations measured in MW-111S may be more reflective of pre-CCR Rule disposal rather than of the CCR Unit.
- Surface water that has come into contact with on-site CCR at the CCR Unit has migrated from the perimeter drainage swale for the CCR Unit due to periodic build-up of sediment within the perimeter surface water swale. When this build-up occurs, surface water flows out of the swale and over the adjoining access road and then to the area of MW-111S. This drainage swale carries surface water runoff from closed portions of the CADL as well as from the CCR Unit. This surface water ultimately migrates from the MW-111S area via surface water swales within the ADEQ-permitted CADL footprint, with ultimate discharge into the site surge pond as per Entergy's NPDES permit. Based on the close proximity of this surface water to MW-111S, it appears likely that surface water infiltration may have impacted the MW-111S monitoring results.

3.11 TDS at MW-111S

The TDS SSI identified at MW-111S is a result of the acidic groundwater geochemistry conditions with natural occurrence of sulfide minerals, sodium sulfate source, the potential impact of CCR disposed at the CADL prior to October 19, 2015 and potential infiltration of surface water impacted by on-site CCR into the subsurface in the area of MW-111S. The following evidence supports this determination:

- TDS was detected in MW-111S at a concentration of 1,270 mg/L in the June 2023 sample, which exceeded the intrawell prediction limit of 541 mg/L. Compared to the value of 1,270 mg/L in the December 2022 sample, the TDS concentration was consistent. The Mann-Kendal statistic of 168 exceeded the critical value of 73 indicating a significant increasing trend at the 98% confidence level. As discussed in Section 2.2, the Jackson Group groundwater is sodium-and calcium-sulfate water type. Sodium could be another main contribution to the TDS exceedance with the increasing of calcium and sulfate. High sodium concentration can also cause the fluoride exceedance. The acidic groundwater could be one of the potential reasons. An alternate source containing sodium sulfate should also be considered, which can be mineral dissolution, surface water flux or atmospheric deposition.
- Based on review of potentiometric surface mapping, locations of closed portions of the CADL, and the CCR Unit relative to MW-111S, MW-111S may monitor groundwater associated with the pre-CCR Rule closed portions of the CADL rather than the CCR Unit. Therefore, concentrations measured in MW-111S may be more reflective of pre-CCR Rule disposal rather than of the Unit.
- Surface water that has come into contact with on-site CCR at the CCR Unit has migrated from the perimeter drainage swale for the CCR Unit due to periodic build-up of sediment within the perimeter surface water swale. When this build-up occurs, surface water flows out of the swale and over the adjoining access road and then to the area of MW-111S. This drainage swale carries surface water runoff from closed portions of the CADL as well as from the CCR

Unit. This surface water ultimately migrates from the MW-111S area via surface water swales within the ADEQ-permitted CADL footprint, with ultimate discharge into the site surge pond as per Entergy's NPDES permit. Based on the close proximity of this surface water to MW-111S, it appears likely that surface water infiltration may have impacted the MW-111S monitoring results.

3.12 Boron at MW-112D

The boron SSI identified at MW-112D is a result of natural variation in groundwater quality and potential impact of CCR disposed at the CADL prior to October 19, 2015. The following evidence supports this determination:

- Boron was detected in MW-112D at a concentration of 0.287 mg/L in the June 2023 sample, which was consistent with 0.278 mg/L in the December 2022 sample. This concentration exceeds the intrawell prediction limit of 0.252 mg/L. Boron concentrations measured at MW-118D (background well for Stratum III) have ranged from 0.274 to 0.355 mg/L. Therefore, the boron exceedance at MW-112D is within the range of variation in background groundwater quality and is not a potential environmental concern.
- Based on review of potentiometric surface mapping, locations of closed portions of the CADL, and the CCR Unit relative to MW-112D, MW-112D is located immediately adjacent (approximately 25 feet) to historic fill, but approximately 950 feet from the CCR Unit. Therefore, the concentrations of boron measured in MW-112D may be more reflective of pre-CCR Rule disposal rather than of the CCR Unit.
- Groundwater flow velocities are estimated to be approximately <1 ft/year to 10 ft/year (TRC 2018a). Since, MW-112D is located approximately 950 feet from the CCR unit, any release from the CCR Unit would be detected in Stratum III at MW-112D within approximately 95 years, which is significantly longer than the CCR Unit has been in operation. Therefore, the concentration of boron at MW-112D likely represents either potential pre-CCR Rule migration from historic fill or background groundwater quality for Stratum III.

3.13 Calcium at MW-112D

The calcium SSI identified at MW-112D is a result of natural variation in groundwater quality and potential impact of CCR disposed at the CADL prior to October 19, 2015. The following evidence supports this determination:

Calcium was detected in MW-112D at a concentration of 39.5 mg/L in the June 2023 sample, which was consistent with 39.3 mg/L in the December 2022 sample. This concentration exceeds the intrawell prediction limit of 23.8 mg/L. The Mann-Kendal statistic of 203 exceeded the critical value of 78 indicating a significant increasing trend at the 98% confidence level. The historical data review shows MW-112D area has a netural pH condition

in groundwater, and the pH of 5.65 detected in June 2023 sample will be confirmed in the next sampling event. The relatively low TDS indicated that EC in groundwater is not a factor to the calcium exceedance. Calcium concentrations measured at MW-118D (background well for Stratum III) have ranged from 68.4 to 83.2 mg/L. Therefore, the calcium exceedance at MW-112D is within the range of variation in background groundwater quality and is not a potential environmental concern.

- Based on review of potentiometric surface mapping, locations of historic fill, locations of closed portions of the CADL, and the CCR Unit relative to MW-112D, MW-112D is located immediately adjacent (approximately 25 feet) to historic fill, but approximately 950 feet from the CCR Unit. Therefore, the concentrations of calcium measured in MW-112D may be more reflective of pre-CCR Rule disposal rather than of the CCR Unit.
- As discussed previously, groundwater flow velocities are estimated to be approximately <1 ft/year to 10 ft/year (TRC 2018a). Since, MW-112D is located approximately 950 feet from the CCR Unit, any release from the CCR Unit would be detected in Stratum III at MW-112D within approximately 95 years, which is significantly longer than the CCR Unit has been in operation. Therefore, the concentration of calcium at MW-112D likely represents either potential pre-CCR Rule migration from historic fill or background groundwater quality for Stratum III.</p>

3.14 TDS at MW-112D

The TDS SSI identified at MW-112D is a result of natural variation in groundwater quality and potential impact of CCR disposed at the CADL prior to October 19, 2015. The following evidence supports this determination:

- TDS was detected in MW-112D at a concentration of 308 mg/L in the June 2023 sample, which exceeded the intrawell prediction limit of 205 mg/L. Compared to the value of 302 mg/L in the December 2022 sample, the TDS concentration was consistent. The Mann-Kendal statistic of 188 exceeded the critical value of 78 indicating a significant increasing trend at the 98% confidence level. TDS concentrations measured at MW-118D (background well for Stratum III) have ranged from 415 to 484 mg/L. A review of groundwater parameters in Stratum III indicates that sulfate is a great contributor to TDS, but the sulfte concentration at MW-112D is very low (less than 5 mg/L). Therefore, the TDS exceedance at MW-112D is within the range of variation in background groundwater quality and is not a potential environmental concern.
- Based on review of potentiometric surface mapping, locations of historic fill, locations of closed portions of the CADL, and the CCR Unit relative to MW-112D, MW-112D is located immediately adjacent (approximately 25 feet) to historic fill, but approximately 950 feet from the CCR Unit. Therefore, the concentrations of TDS measured in MW-112D may be more reflective of pre-CCR Rule disposal rather than of the CCR Unit.

As discussed previously, groundwater flow velocities are estimated to be approximately <1 ft/year to 10 ft/year (TRC 2018a). Since, MW-112D is located approximately 950 feet from the CCR unit, any release from the CCR Unit would be detected in Stratum III at MW-112D within approximately 95 years, which is significantly longer than the CCR Unit has been in operation. Therefore, the concentration of TDS at MW-112D likely represents either potential pre-CCR Rule migration from the historic fill or background groundwater quality for Stratum III.</p>

3.15 TDS at MW-114D

The TDS SSI identified at MW-114D is a result of natural variation in groundwater quality. The following evidence supports this determination:

- TDS was detected in MW-114D at a concentration of 326 mg/L in the June 2023 sample, which exceeded the intrawell prediction limit of 322 mg/L. Compared to the value of 331 mg/L in the December 2022 sample, the TDS concentration was consistent. TDS concentrations measured at MW-118D (background well for Stratum III) have ranged from 415 to 642 mg/L. Therefore, the TDS exceedance at MW-114D is within the range of variation in background groundwater quality and is not a potential environmental concern.
- Based on review of potentiometric surface mapping, locations of closed portions of the CADL, and the CCR Unit relative to MW-114D, MW-114D is located 950 feet from the CCR Unit. Therefore, the concentrations of TDS measured in MW-114D may be more reflective of background natural water quality rather than of the CCR Unit.
- As discussed previously, groundwater flow velocities in Stratum III are estimated to be approximately <1 ft/year to 10 ft/year (TRC 2018a). Since, MW-114D is located approximately 950 feet from the CCR Unit, any release from the pre-CCR Rule closed portions of the CADL or the CCR Unit would be detected in Stratum III at MW-114D within approximately 95 years, which is significantly longer than either the CADL or the CCR Unit has been in operation. Therefore, the concentration of calcium at MW-114D likely represents background natural groundwater quality for Stratum III.

3.16 TDS at MW-118D

The TDS SSI identified at MW-118D is a result of natural variation in groundwater quality. The following evidence supports this determination:

■ TDS was detected in MW-118D at a concentration of 566 mg/L in the June 2023 sample, which exceeded the intrawell prediction limit of 545 mg/L. Compared to the value of 557 mg/L in the December 2022 sample, the TDS concentration was consistent. MW-118D is one of the Stratum III background monitoring wells. The TDS exceedance at MW-118D is within the

- range of variation in background groundwater quality and is not a potential environmental concern.
- Based on review of potentiometric surface mapping, locations of closed portions of the CADL, and the CCR Unit relative to MW-118D, MW-118D is located 1800 feet from the CCR Unit. Therefore, the concentrations of TDS measured in MW-118D may be more reflective of background natural water quality rather than of the CCR Unit.
- As discussed previously, groundwater flow velocities in Stratum III are estimated to be approximately <1 ft/year to 10 ft/year (TRC 2018a). Since, MW-118D is located approximately 1800 feet from the CCR Unit, any release from the pre-CCR Rule closed portions of the CADL or the CCR Unit would be detected in Stratum III at MW-118D within approximately 180 years, which is significantly longer than either the CADL or the CCR Unit has been in operation. Therefore, the concentration of calcium at MW-118D likely represents background natural groundwater quality for Stratum III.

Section 4 Conclusions

The information provided in this report serves as the ASD prepared in accordance with 40 CFR 257.94(e)(2) of the CCR Rule. Statistical evaluation identified 15 potential SSIs in three monitoring wells in Startums I and three monitoring wells in Strartums III. This ASD has demonstrated the following lines of reasoning that support alternative sources for the identified SSIs:

- Low pH values detected sitewide especially in Startums III could be possibaly due to field dection instrument inaccuracies or potential sampling errors rather than indicative of contamination sources. The monitoring data in next sampling event will be used as confirmation.
- Historical data indicated acidic groundwater geochemistry conditions in MW-106S, MW-110S and MW-111S. The 10 SSIs identified in Startums I are related to the naurtal groundwater geochemistry conditions, such as low pH, high electrical conductivity, potential presence of sulfide minerals in soils and relatively high oxidation-reduction potential.
- The 5 SSIs identified in Startums III are mostly within the natural variation in groundwater quality compared to MW-118D, which likely represents background natural groundwater quality for Stratum III due to its location to CCR Unit and groundwater flow velocities.
- Releases from historic fill or portions of the CADL closed before the effective date of the CCR Rule (October 19, 2015); and/or
- Surface water that has come into contact with on-site CCR and has migrated into the subsurface.

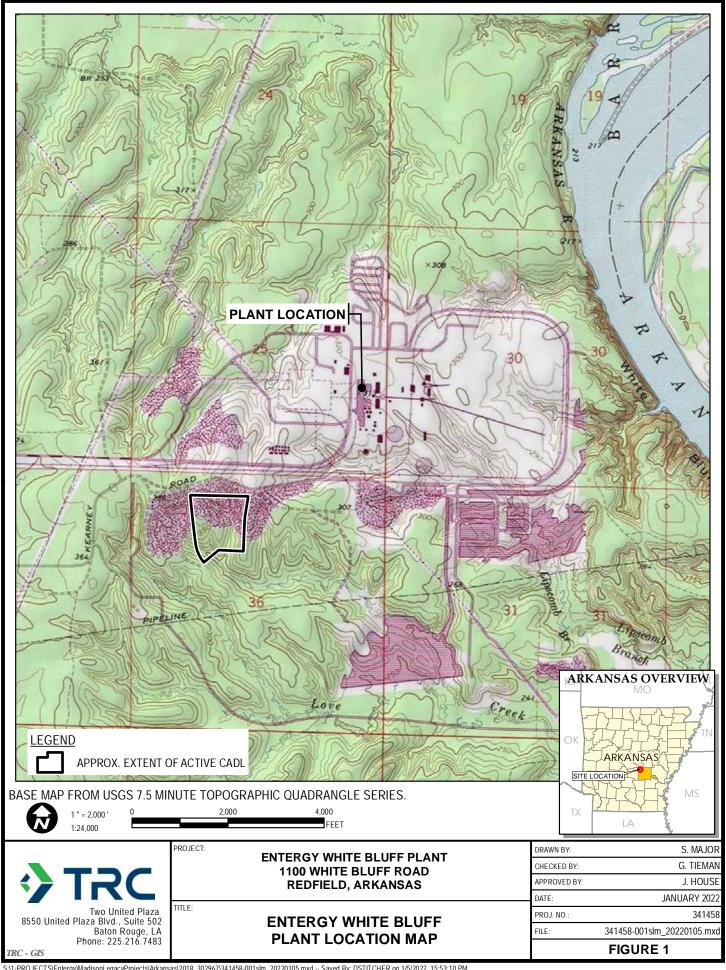
Therefore, the SSIs determined based on statistical analysis of the 1st Half 2023 semiannual detection monitoring event performed in June 2023 are not due to a release from the CCR Unit to Stratums I and III of the Jackson Group. Based on the information provided in this ASD report, Entergy will continue to conduct semiannual detection monitoring in accordance with 40 CFR 257.94 at the Certified Monitoring Well Network for the CCR Unit.

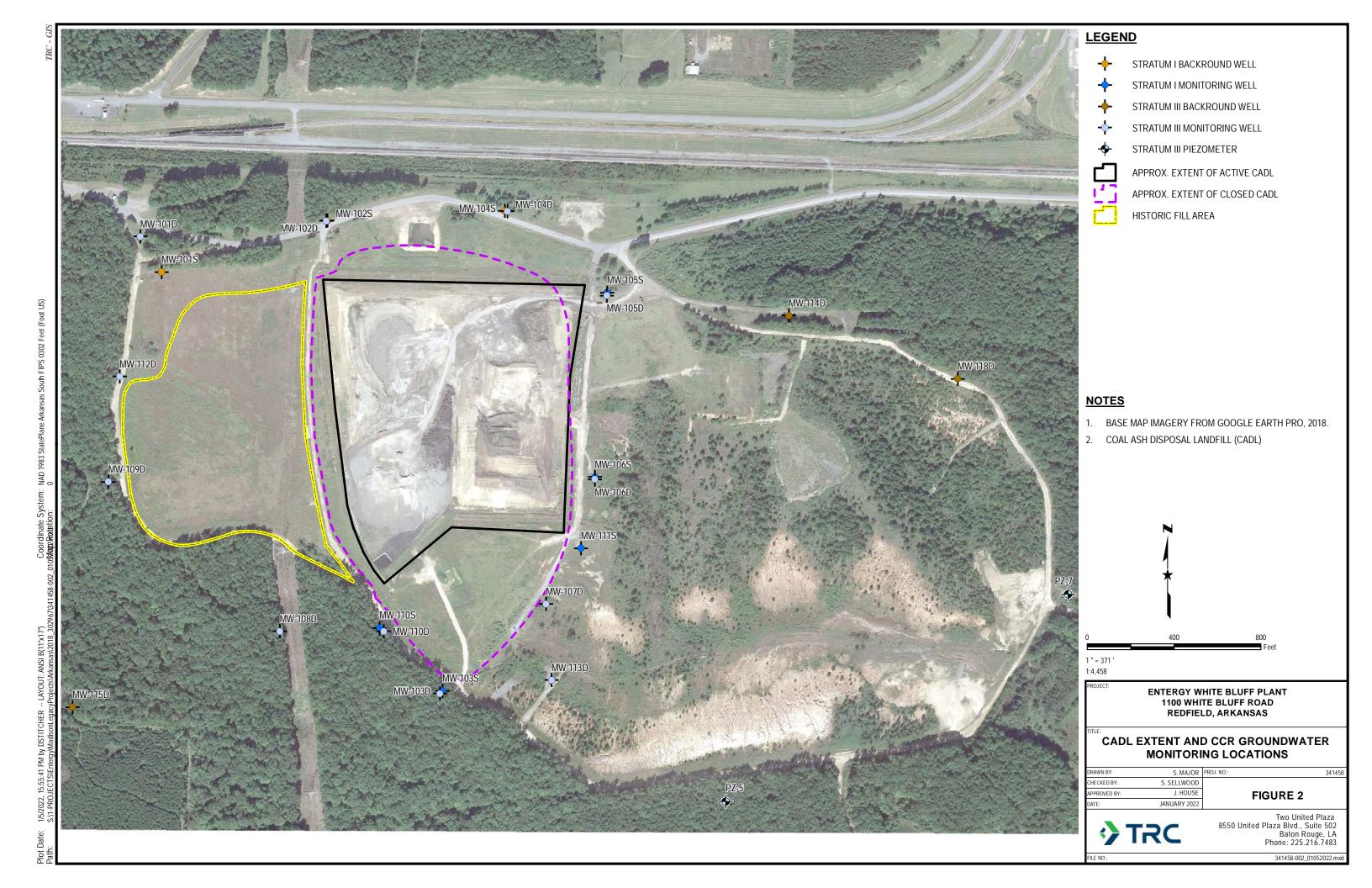
Section 5 Certification

I hereby certify that the alternative source demonstration presented within this document for the Entergy White Bluff Plant Coal Ash Disposal Landfill CCR Unit has been prepared to meet the requirements of Title 40 CFR §257.94(e) 2 of the Federal CCR Rule. This document is accurate and has been prepared in accordance with good engineering practices, including the consideration of applicable industry standards, and with the requirements of Title 40 CFR §257.94(e) 2.

Name: _	Michael J. Amstadt P.E.	Expiration Date: 12/31/2024
Company	7: TRC Environmental Corporation	Date: 10/16/2023

(SEAL)


Section 6 References


- Atekwana, E. A., Atekwana, E. A., Rowe, R. S., Werkema, D. D., & Legall, F. D. (2004). The relationship of total dissolved solids measurements to bulk electrical conductivity in an aquifer contaminated with hydrocarbon. Journal of Applied Geophysics, 56(4), 281–294.
- Banadkooki, F. B., Ehteram, M., Panahi, F., Sh. Sammen, S., Othman, F. B., & EL-Shafie, A. (2020). Estimation of total dissolved solids (TDS) using new hybrid machine learning models. Journal of Hydrology, 587(February), 124989.
- Brindha, K., & Elango, L. (2011). Fluoride in groundwater: Causes, implications and mitigation measures. Fluoride: Properties, Applications and Environmental Management, 113–136.
- Chen, Q., Jia, C., Wei, J., Dong, F., Yang, W., Hao, D., Jia, Z., & Ji, Y. (2020). Geochemical process of groundwater fluoride evolution along global coastal plains: Evidence from the comparison in seawater intrusion area and soil salinization area. Chemical Geology, 552(July), 119779.
- Einsiedl, F., & Mayer, B. (2005). Sources and Processes Affecting Sulfate in a Karstic Groundwater System of the Franconian Alb, Southern Germany. Environmental Science & Technology, 39(18), 7118–7125.
- FTN. 2014. Supplemental Geotechnical and Hydrogeological Investigation Report, Entergy White Bluff Plant Class 3N Landfill. Prepared for Entergy Arkansas, Inc. Little Rock, AR: FTN Associates, Ltd. October 1, 2014.
- FTN. 2017a. Statistical Analysis Plan, Entergy White Bluff Plant. Little Rock, AR: FTN Associates, Ltd.
- FTN. 2017b. Groundwater Sampling and Analysis Plan, Entergy White Bluff Landfill. Little Rock, AR: FTN Associates, LTD.
- Guo, H., Zhang, Y., Xing, L., & Jia, Y. (2012). Spatial variation in arsenic and fluoride concentrations of shallow groundwater from the town of Shahai in the Hetao basin, Inner Mongolia. Applied Geochemistry, 27(11), 2187–2196.
- Hájek, M., Jiménez-Alfaro, B., Hájek, O., Brancaleoni, L., Cantonati, M., Carbognani, M., Dedić, A., Díte, D., Gerdol, R., Hájková, P., Horsáková, V., Jansen, F., Kamberović, J., Kapfer, J., Kolari, T. H. M., Lamentowicz, M., Lazarević, P., Mašić, E., Moeslund, J. E., ...

- Horsák, M. (2021). A European map of groundwater pH and calcium. Earth System Science Data, 13(3), 1089–1105.
- Hollis, J. F., Keren, R., & Gal, M. (1988). Boron Release and Sorption by Fly Ash as Affected by pH and Particle Size. Journal of Environmental Quality, 17(2), 181–184.
- Jiang, Y., Wu, Y., Groves, C., Yuan, D., & Kambesis, P. (2009). Natural and anthropogenic factors affecting the groundwater quality in the Nandong karst underground river system in Yunan, China. Journal of Contaminant Hydrology, 109(1–4), 49–61.
- Keren, R., & Communar, G. (2009). Boron Sorption on Wastewater Dissolved Organic Matter: pH Effect. Soil Science Society of America Journal, 73(6), 2021–2025.
- Kimambo, V., Bhattacharya, P., Mtalo, F., Mtamba, J., & Ahmad, A. (2019). Fluoride occurrence in groundwater systems at global scale and status of defluoridation State of the art. Groundwater for Sustainable Development, 9(August 2018), 100223.
- Kresse, T.M., P.D. Hays, K.R. Merriman, J.A. Gillip, D.T. Fugitt, J.L. Spellman, A.M. Nottmeier, D.A. Westerman, J.M. Blackstock, and J.L. Battreal. 2014. Aquifers of Arkansas—Protection, Management, and Hydrologic and Geochemical Characteristics of Groundwater Resources in Arkansas [USGS Scientific Investigations Report 2014–5149]. Prepared in Cooperation with the Arkansas Natural Resources Commission. Reston, VA: US Geological Survey. 334 pp.
- Luo, W., Gao, X., & Zhang, X. (2018). Geochemical processes controlling the groundwater chemistry and fluoride contamination in the yuncheng basin, China—an area with complex hydrogeochemical conditions. PLoS ONE, 13(7).
- MDH. (2008). Sulfate in well water. In Minnesota Department of Health, Well Management Section, Environmental Health Division.
- Miao, Z., Brusseau, M. L., Carroll, K. C., Carreón-Diazconti, C., & Johnson, B. (2012). Sulfate reduction in groundwater: Characterization and applications for remediation. Environmental Geochemistry and Health, 34(4), 539–550.
- Mondal, D., Gupta, S., Reddy, D. V., & Nagabhushanam, P. (2014). Geochemical controls on fluoride concentrations in groundwater from alluvial aquifers of the Birbhum district, West Bengal, India. Journal of Geochemical Exploration, 145, 190–206.
- Olumuyiwa I. Ojo,. (2012). Groundwater: Characteristics, qualities, pollutions and treatments: An overview. International Journal of Water Resources and Environmental Engineering, 4(6), 162–170.

- Palmucci, W., & Rusi, S. (2014). Boron-rich groundwater in Central Eastern Italy: a hydrogeochemical and statistical approach to define origin and distribution. Environmental Earth Sciences, 72(12), 5139–5157.
- Poursaeid, M., Mastouri, R., Shabanlou, S., & Najarchi, M. (2020). Estimation of total dissolved solids, electrical conductivity, salinity and groundwater levels using novel learning machines. Environmental Earth Sciences, 79(19), 1–25.
- Pu, J., Yuan, D., Zhang, C., & Zhao, H. (2012). Hydrogeochemistry and possible sulfate sources in karst groundwater in Chongqing, China. Environmental Earth Sciences 2012 68:1, 68(1), 159–168.
- Ravenscroft, P., & McArthur, J. M. (2004). Mechanism of regional enrichment of groundwater by boron: the examples of Bangladesh and Michigan, USA. Applied Geochemistry, 19(9), 1413–1430.
- Razowska-jaworek, L. (2014). Calcium and Magnesium in Groundwater. In Calcium and Magnesium in Groundwater.
- Saxena, V., & Ahmed, S. (2001). Dissolution of fluoride in groundwater: a water-rock interaction study. Environmental Geology, 40(9), 1084–1087.
- Schot, P. P., & Wassen, M. J. (1993). Calcium concentrations in wetland groundwater in relation to water sources and soil conditions in the recharge area. Journal of Hydrology, 141(1–4), 197–217.
- Shi, X., Wang, Y., Jiao, J. J., Zhong, J., Wen, H., & Dong, R. (2018). Assessing major factors affecting shallow groundwater geochemical evolution in a highly urbanized coastal area of Shenzhen City, China. Journal of Geochemical Exploration, 184, 17–27.
- Tabelin, C. B., Hashimoto, A., Igarashi, T., & Yoneda, T. (2014). Leaching of boron, arsenic and selenium from sedimentary rocks: II. pH dependence, speciation and mechanisms of release. Science of The Total Environment, 473–474, 244–253.
- TRC. 2017. Statistical Methods Certification, White Bluff Steam Electric Generating Station, Redfield, Arkansas. Prepared for Entergy Arkansas Inc. Baton Rouge: TRC Environmental Corporation.
- TRC. 2018a. Site Conceptual Model: Entergy White Bluff Plant Coal Ash Disposal Landfill, Redfield, Jefferson County, Arkansas. January 2018.

- TRC. 2018b. Groundwater Monitoring System Certification, White Bluff Steam Electric Generating Station, Redfield, Arkansas. Prepared for Entergy Arkansas Inc. Baton Rouge: TRC Environmental Corporation.
- Upadhyaya, D., Survaiya, M. D., Basha, S., Mandal, S. K., Thorat, R. B., Haldar, S., Goel, S., Dave, H., Baxi, K., Trivedi, R. H., & Mody, K. H. (2014). Occurrence and distribution of selected heavy metals and boron in groundwater of the Gulf of Khambhat region, Gujarat, India. Environmental Science and Pollution Research, 21(5), 3880–3890.
- USEPA. (2008). Drinking Water Health Advisory For Boron. Office of Water U.S. Environmental Protection Agency Washington, DC, 822-R-08–0.
- United States Environmental Protection Agency. 2017. Secondary Drinking Water Standards: Guidance for Nuisance Chemicals, March 8, 2017.
- WHO. (2008). Guidelines for Drinking Water Quality, third ed. World Health Organization, Geneva.

